• 제목/요약/키워드: Structural Content

검색결과 1,373건 처리시간 0.025초

Composition Dependence on Structural and Optical Properties of MgxZn1-xO Thin Films Prepared by Sol-Gel Method

  • Kim, Min-Su;Noh, Keun-Tae;Yim, Kwang-Gug;Kim, So-A-Ram;Nam, Gi-Woong;Lee, Dong-Yul;Kim, Jin-Soo;Kim, Jong-Su;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권9호
    • /
    • pp.3453-3458
    • /
    • 2011
  • The $Mg_xZn_{1-x}O$ thin films with the various content ratio ranging from 0 to 0.4 were prepared by sol-gel spincoating method. To investigate the effects of content ratio on the structural and optical properties of the $Mg_xZn_{1-x}O$ thin films, scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) were carried out. With increase in the content ratio, the grain size of the $Mg_xZn_{1-x}O$ thin films was increased, however, at the content ratio above 0.2, MgO particles with cubic structure were formed on the surface of the $Mg_xZn_{1-x}O$ thin films, indicating that the Mg content exceeded its solubility limit in the thin films. The residual stress of the $Mg_xZn_{1-x}O$ thin films is increased with increase in the Mg mole fraction. In the PL investigations, the bandgap and the activation energy of the $Mg_xZn_{1-x}O$ thin films was increased with the Mg mole fraction.

폐석분 함유율에 따른 최적의 콘크리트 탄성계수 추정 (Presumption of Optimum Concrete Elastic Modulus according to Content of Crushed Stone Powder)

  • 박도경;양극영
    • 한국건축시공학회지
    • /
    • 제6권1호
    • /
    • pp.101-107
    • /
    • 2006
  • While a Study with regard to the measurement on Concrete Strength and the Change of Drying Shrinkage in accordace with Content Ratio of Crushed Stone Powder, it is being analyzed as the result that the strength according to Content Ratio of crushed Stone Powder is somewhat lowering. Accordingly, it is the real situation that the Concrete mixed with Crushed Stone Powder is utilized for non-structural material, not for the structural material. Therefore, this Research willing to furnish the suitable utilizing scheme for construction site as well as practical life by means of conduct the experiment on both Concrete Pressure Strength according to mixture with Crushed Stone Powder and Elastic Modulus, it also presumes the optimum Elastic Modulus Equation after analysis of comparison with common concrete strength. As the result of the experiment, in case of the Content Ratio of Crushed Stone Powder is less than 5%, it did not display a big difference in its both strength and matter-property compare with common concrete. In case of Elastic Modulus, when the Pressure Strength is 50% and 40% respectively, the Elastic Modulus Equation accords very well with the provided condition of Quadratic function, and as the result of the Presumption on Elastic Modulus according to Content of Crushed Stone Powder, in case the Pressure Strength is 50%, Elastic Modulus Equation showed that Error Ratio of Cubic function is at degree of 0.0005%, in case the Pressure Strength is 40%, Elastic Modulus Equation was accorded well with the value of the experimental data likely as the Error Ratio of Cubic function is at the degree around 0.0034%, respectively.

저장탄수화물과 질소의 월동성과 재생활력에 대한 이용성 I. 저온처리가 유채 ( Brassica napus L. ) 의 생육 , 질소 및 비구조성 탄수화물의 총 함량에 미치는 영향 (Partitioning of Carbon and Nitrogen Reserves During Winter Adaptation and Spring Regrowth I. Effects of temperature on growth, total content of nitrogen and non-structureal carbohydrate in forage rape(Brassica napus L.))

  • 김병호;김태환;김기원;정우진;전해열
    • 한국초지조사료학회지
    • /
    • 제15권3호
    • /
    • pp.157-163
    • /
    • 1995
  • The objective of this study is to obtain the basic data for investigating the effects of organic reserves on winter survial or regrowth yield. Dry matter, nitrogen and non-structural carbohydrate content of plants grown under $5^{\circ}C$ or $20^{\circ}C$ of culture temperature during 25 days were investigated. The dry matter content of leaves and roots were significantly reduced under $5^{\circ}C$ compared with $20^{\circ}C$culture condition. Comparing with the dry matter per plant under $20^{\circ}C$, those in leaves and roots under $5^{\circ}C$ decreased to 25% and 10%, respectively, after 25 days of temperature treatment. Total nitrogen content in leaves under $20^{\circ}C$ and $5^{\circ}C$ increased to 68% and 39% compared to the initial lenel(day O), respectively, during 25 days after temperature treatment, Nitrogen content in roots highly increased under 5 C while there was a little change under $20^{\circ}C$ condition. The nitrogen contents in roots under $5^{\circ}C$ and $20^{\circ}C$ were 39.0 and 30.8mgJg DM, respectively, after 25 days of temperature treatment. Total contents of soluble carbohydrate in both leaves and roots under $5^{\circ}C$ were higher than those under $20^{\circ}C$ condition. After 25 days of temperature treatment under$5^{\circ}C$ , their contents in leaves and roots were 1.4 and 2.0 times higher than those of under $20^{\circ}C$ condition. Stach atent in roots under $20^{\circ}C$ was less changed, while thatof under $5^{\circ}C$ greatly increased from 64.8 to 178.7mglg DM duling 25 days. 'Ihese results clearly showed that an accumulation of both nitrogen and non-structural carbohydrate in the plants occured under low temperature condition.e condition.

  • PDF

메타카올린을 혼입한 초속경 폴리머 시멘트 콘크리트의 내구특성 (Durability of Ultrarapid-Hardening Polymer-Modified Concretes Using Metakaolin)

  • 유태호;장병하;홍현표
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권5호
    • /
    • pp.31-38
    • /
    • 2018
  • 이 본 연구에서는 메타카올린을 혼입한 초속경 폴리머 시멘트 콘크리트의 압축, 휨, 부착강도, 수밀성, 염화물 이온 침투 저항성,탄산화 깊이 및 동결융해 저항성에 미치는 폴리머-결합재비 및 메타카올린 첨가량의 영향에 대하여 검토하였다. 그 결과, 초속경 폴리머 시멘트 콘크리트의 휨, 압축 및 부착강도는 폴리머-결합재비의 증가에 따라 증가하는 경향을 보였다. 폴리머-결합재비에 관계없이, 초속경 폴리머 시멘트 콘크리트의 강도는 메타카올린 첨가량의 증가에 따라 증가하였으며, 메타카올린 첨가량 5%에서 최고 값을 나타내었다. 초속경 폴리머 시멘트 콘크리트의 흡수율, 탄산화 깊이 및 염화물이온 침투저항성은 폴리머-결합재비의 증가에 따라 감소하는 경향을 보였다. 초속경 폴리머 시멘트 콘크리트의 동결융해 저항성의 개선은 폴리머 에멀젼의 혼입에 의해 시멘트 수화물과 골재간의 접착성이 개선되기 때문이라 판단된다.

추파유채 ( Brassica napus L. ) 생육시기에 따른 비구조성 탄수화물 함량의 변화 ( Changes in the Non-Structural Carbohybrate Content during Growth Period in Forage Raps ( Brassica napus L. ) )

  • 전해열;김태환;김병호;강우성
    • 한국초지조사료학회지
    • /
    • 제14권4호
    • /
    • pp.331-338
    • /
    • 1994
  • The objective of this study is to obtain the basic data for investigating the potentiality of continuous utilization (first cutting in the late fall and regrowth yield in next spring) of forage rape seeded in fall. Non-structural carbohydrates(NSC) in leaves and roots of forage rape seeded on Oct. 3 were analyzed during a growth period. The greatest change in NSC content was observed between the wintering and the early spring period. The total content of soluble sugar in leaves and roots highly increased from the late fall(Nov. 7) to the wintering period (Feb. 4), and then rapidly decreased on the early regrow^ period(Mar. 31). The contents of fructose and glucose were relatively lower, and their quantitative change also was smaller than those of other sugars through entire growth period. The highest accumulation of sucrose occured hum the late fall to wintering period, and then greatly decreased in the early regrowth period. Sucrose content in roots was 2.3 times higher than that of leaves in wintering period. Starch was the largest pool of NSC and its content in leaves and roots showed a similar pattern with that of sucrose through entire growth period. Starch contents in leaves and roots were 38mg and 189mgl gDM in the late fall(Nov. 7), 187 and 497mg/gDM(Feb. 4) in the wintering period and 69 and 79mglgDM(Mar. 28) in the early regrowth period, respectively. The results clearly showed that the main reserve forms of NSC are starch and sucrose, and that they are hlghly stored in roots in overwintering forage rape.

  • PDF

Effect of Growth and Culture Conditions of Paecilomyces japonica and Cordyceps militaris on the Formation of Bioactive Substance

  • Jeng, Yong-Young
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2003년도 춘계 학술발표대회
    • /
    • pp.138-139
    • /
    • 2003
  • To investigated the effect of liquid culture conditions and nutrient sources on the formation with bioactive substance of Paeilomyces japonica and Cordyceps militaris cultivated in the country, the result are as follow; The growth temperature of two mycelia is 25$^{\circ}C$ and the proper temperature for cordycepin growth is around 20$^{\circ}C$. The formation amount of bioactive substance by nutrient sources reached its peak with using 2% glucose and 1% galactose in case of carbon sources and 0.4% inorganic compound in case of nitrogen sources. Also, the ratio of C/N was optimal with 3% glucose 1% peptone. For a natural medium, most grains were sufficient but the soybean oil was superb. The formation amount of protein-binding polysaccharide that are used for anticancer substance was in proportion to the growth rate of mycelium, had lots of aeration and showed a trend of increasing when the acidity lower. and the content of structural protein showed a trend of increasing when the acidity lower. However, the content of the structural hexosamin did not get a great the effect of culture conditions and nutrient sources. The constitution of monosaccharide that organizes a protein-binding polysaccharide greatly changed in proportion to carbon sources. When Paecilomyces japonica cultured in a silkworm larvae for 30 days, the content of cordycepin was 204.5 mg/100mL as a dry weight in the fruiting body, 41.8 mg/100mL in mycelium and larva, and the content for each bottle was average 29.5 mg/100mL. In case of Cordyceps militaris for 45days, the fruiting body was 563.5 mg/100mL, the larva and the mycelium was 86.1 mg/100mL, and the content for each bottle was average 65.0 mg/100mL.

  • PDF

Service life evaluation of HPC with increasing surface chlorides from field data in different sea conditions

  • Jong-Suk Lee;Keun-Hyeok Yang;Yong-Sik Yoon;Jin-Won Nam;Seug-Jun Kwon
    • Advances in concrete construction
    • /
    • 제16권3호
    • /
    • pp.155-167
    • /
    • 2023
  • The penetrated chloride in concrete has different behavior with mix proportions and local exposure conditions, even in the same environments, so that it is very important to quantify surface chloride contents for durability design. As well known, the surface chloride content which is a key parameter like external loading in structural safety design increases with exposure period. In this study, concrete samples containing OPC (Ordinary Portland Cement), GGBFS (Ground Granulated Blast Furnace Slag), and FA (Fly Ash) had been exposed to submerged, tidal, and splash area for 5 years, then the surface chloride contents changing with exposure period were evaluated. The surface chloride contents were obtained from the chloride profile based on the Fick's 2nd Law, and the regression analysis for them was performed with exponential and square root function. After exposure period of 5 years in submerged and tidal area conditions, the surface chloride content of OPC concrete increased to 6.4 kg/m3 - 7.3 kg/m3, and the surface chloride content of GGBFS concrete was evaluated as 7.3 kg/m3 - 11.5 kg/m3. In the higher replacement ratio of GGBFS, the higher surface chloride contents were evaluated. The surface chloride content in FA concrete showed a range of 6.7 kg/m3 to 9.9 kg/m3, which was the intermediate level of OPC and GGBFS concrete. In the case of splash area, the surface chloride contents in all specimens were from 0.59 kg/m3 to 0.75 kg/m3, which was the lowest of all exposure conditions. Experimental constants available for durability design of chloride ingress were derived through regression analysis over exposure period. In the concrete with GGBFS replacement ratio of 50%, the increase rate of surface chloride contents decreased rapidly as the water to binder ratio increased.

Probabilistic estimation of seismic economic losses of portal-like precast industrial buildings

  • Demartino, Cristoforo;Vanzi, Ivo;Monti, Giorgio
    • Earthquakes and Structures
    • /
    • 제13권3호
    • /
    • pp.323-335
    • /
    • 2017
  • A simplified framework for the probabilistic estimation of economic losses induced by the structural vulnerability in single-story and single-bay precast industrial buildings is presented. The simplifications introduced in the framework are oriented to the definition of an expeditious procedure adoptable by government agencies and insurance companies for preliminary risk assessment. The economic losses are evaluated considering seismic hazard, structural response, damage resulting from the structural vulnerability and only structural-vulnerability-induced e]conomic losses, i.e., structural repair or reconstruction costs (stock and flow costs) and content losses induced by structural collapse. The uncertainties associated with each step are accounted for via Monte Carlo simulations. The estimation results in a probabilistic description of the seismic risk of portal-like industrial buildings, expressed in terms of economic losses for each occurrence (i.e., seismic event) that owners (i.e., insured) and stakeholders can use to make risk management decisions. The outcome may also be useful for the definition of the insurance premiums and the evaluation of the risks and costs for the owner corresponding to the insurance industrial costs. A prototype of a precast concrete industrial building located in Mirandola, Italy, hit by the 2012 Emilia earthquake, is used as an example of the application of the procedure.

잠재 구조적 SVM을 활용한 감성 분석기 (Sentiment Analysis using Latent Structural SVM)

  • 양승원;이창기
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권5호
    • /
    • pp.240-245
    • /
    • 2016
  • 본 연구에서는 댓글(음식점/영화/모바일제품) 및 도메인이 없는 트위터 데이터에 대한 감성 분석을 수행하고, 각 문장에 대한 object(or aspect)와 opinion word를 추출하는 시스템을 개발하고 평가한다. 감성 분석을 수행하기 위해 Structural SVM 알고리즘과 Latent Structural SVM 알고리즘을 사용하여 비교 평가하였으며, 실험 결과 Latent Structural SVM이 더 좋은 성능을 보였으며, 구문 분석을 통해 분석된 VP, NP정보를 활용하여 object(aspect)와 opinion word를 추출할 수 있음을 보였다. 또한, 실제 서비스에 활용하기 위해 감성 탐지기를 개발하고 평가하였다.

A spiral variable section capillary model for piping hydraulic gradient of soils causing water/mud inrush in tunnels

  • Lin, P.;Li, S.C.;Xu, Z.H.;Li, L.P.;Huang, X.;He, S.J.;Chen, Z.W.;Wang, J.
    • Geomechanics and Engineering
    • /
    • 제13권6호
    • /
    • pp.947-961
    • /
    • 2017
  • An innovative spiral variable-section capillary model is established for piping critical hydraulic gradient of cohesion-less soils causing water/mud inrush in tunnels. The relationship between the actual winding seepage channel and grain-size distribution, porosity, and permeability is established in the model. Soils are classified into coarse particles and fine particles according to the grain-size distribution. The piping critical hydraulic gradient is obtained by analyzing starting modes of fine particles and solving corresponding moment equilibrium equations. Gravities, drag forces, uplift forces and frictions are analyzed in moment equilibrium equations. The influence of drag force and uplift force on incipient motion is generally expounded based on the mechanical analysis. Two cases are studied with the innovative capillary model. The critical hydraulic gradient of each kind of sandy gravels with a bimodal grain-size-distribution is obtained in case one, and results have a good agreement with previous experimental observations. The relationships between the content of fine particles and the critical hydraulic gradient of seepage failure are analyzed in case two, and the changing tendency of the critical hydraulic gradient is accordant with results of experiments.