• Title/Summary/Keyword: Structural Constraint

Search Result 396, Processing Time 0.029 seconds

Methods of Design Optimality Evaluation for Caisson Structural Systems (케이슨 구조계의 설계 최적성 평가)

  • Choi Min-Hee;Ryu Yeon-Sun;Cho Hyun-Man;Na Won-Bae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.89-96
    • /
    • 2005
  • Numerical procedure of design optimality evaluation is studied for caisson structural systems. Two kinds of evaluation methods can be considered; mathematical optimality criteria method (MOCM) and numerical optimization method (NOM). The choice of the method depends on the available information of the system MOCM can be used only when the information of all function values, gradients and Lagrange multipliers is available, which may not be realistic in practice. Therefore, in this study, NOMs are applied for the structural optimality evaluation, where only design variables are necessary. To this end, Metropolis genetic algorithm (MGA) is advantageously used and applied for a standard optimization model of caisson composite breakwater. In the numerical example, cost and constraint functions are assumed to be changed from the orignal design situation and their effects are evaluated for optimality. From the theoretical consideration and numerical experience, it is found that the proposed optimality evaluation procedure with MGA-based NOM is efficient and practically applicable.

  • PDF

Structural Optimization of a Control Arm with Consideration of Durability Criteria (내구기준을 고려한 컨트롤 암의 구조최적설계)

  • Kim, Jong-Kyu;Park, Young-Chul;Kim, Young-Jun;Lee, Kwon-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1225-1232
    • /
    • 2009
  • This study suggests a structural design process for the upper control arm installed at a vehicle. Static strength and durability are the most important responses in the structural design of a control arm. This study considers the static strength in the optimization process. The inertia relief method for FE analysis is utilized to simulate the static loading conditions. According to the classification of structural optimization, the structural design of a control arm is included in the category of shape optimization. In this study, the metamodel technique using the kriging method is adopted to obtain the minimum weight satisfying the strength constraint. Then, the final design is suggested by considering the durability criteria. The durability assessment is obtained by the index of fatigue durability called the SWT (Smith-Watson-Topper) index. The final optimum shape has been proposed by trial and error method.

Thangka Image Inpainting Algorithm Based on Wavelet Transform and Structural Constraints

  • Yao, Fan
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1129-1144
    • /
    • 2020
  • The thangka image inpainting method based on wavelet transform is not ideal for contour curves when the high frequency information is repaired. In order to solve the problem, a new image inpainting algorithm is proposed based on edge structural constraints and wavelet transform coefficients. Firstly, a damaged thangka image is decomposed into low frequency subgraphs and high frequency subgraphs with different resolutions using wavelet transform. Then, the improved fast marching method is used to repair the low frequency subgraphs which represent structural information of the image. At the same time, for the high frequency subgraphs which represent textural information of the image, the extracted and repaired edge contour information is used to constrain structure inpainting in the proposed algorithm. Finally, the texture part is repaired using texture synthesis based on the wavelet coefficient characteristic of each subgraph. In this paper, the improved method is compared with the existing three methods. It is found that the improved method is superior to them in inpainting accuracy, especially in the case of contour curve. The experimental results show that the hierarchical method combined with structural constraints has a good effect on the edge damage of thangka images.

Structural dynamic optimization with probability constraints of frequency and mode

  • Chen, Jian-Jun;Che, Jian-Wen;Sun, Huai-An;Ma, Hong-Bo;Cui, Ming-Tao
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.479-490
    • /
    • 2002
  • The structural dynamic optimization problem based on probability is studied. Considering the randomness of structural physical parameters and the given constraint values, we develop a dynamic optimization mathematical model of engineering structures with the probability constraints of frequency, forbidden frequency domain and the vibration mode. The sensitivity of structural dynamic characteristics based on probability is derived. Two examples illustrate that the optimization model and the method applied are rational and efficient.

A Study on the Ranked Bidirectional Evolutionary Structural Optimization (등급 양방향 진화적 구조 최적화에 관한 연구)

  • Lee, Yeong-Sin;Ryu, Chung-Hyeon;Myeong, Chang-Mun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1444-1451
    • /
    • 2001
  • The evolutionary structural optimization(ESO) method has been under continuous development since 1992. The bidirectional evolutionary structural optimization(BESO) method is made of additive and removal procedure. The BESO method is very useful to search the global optimum and to reduce the computational time. This paper presents the ranked bidirectional evolutionary structural optimization(R-BESO) method which adds elements based on a rank, and the performance indicator which can estimate a fully stressed model. The R-BESO method can obtain the optimum design using less iteration number than iteration number of the BESO.

Design and Structural Analysis of Leg Extension Machine (레그 익스텐션 기구의 설계 및 구조해석)

  • 이종선;백두성
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.4
    • /
    • pp.326-330
    • /
    • 2004
  • This study is object to design and structural analysis of Leg Extension Machine. Design tool is AutoCAD and structural analysis of Leg Extension Machine using result from ANSYS Code. This structural analysis results, many variables such as boundary condition, constraint condition and load condition are considered.

  • PDF

Multi-criteria Structural Optimization Methods and their Applications (다목적함수 최적구조설계 기법 및 응용)

  • Kim, Ki-Sung;Jin, Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.4
    • /
    • pp.409-416
    • /
    • 2009
  • The structural design problems are acknowledged to be commonly multi-criteria in nature. The various multi-criteria optimization methods are reviewed and the most efficient and easy-to-use Pareto optimal solution methods are applied to structural optimization of a truss and a beam. The result of the study shows that Pareto optimal solution methods can easily be applied to structural optimization with multiple objectives, and the designer can have a choice from those Pareto optimal solutions to meet an appropriate design environment.

Stress Constraint Topology Optimization using Backpropagation Method in Design Sensitivity Analysis (설계민감도 해석에서 역전파 방법을 사용한 응력제한조건 위상최적설계)

  • Min-Geun, Kim;Seok-Chan, Kim;Jaeseung, Kim;Jai-Kyung, Lee;Geun-Ho, Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.6
    • /
    • pp.367-374
    • /
    • 2022
  • This papter presents the use of the automatic differential method based on the backpropagation method to obtain the design sensitivity and its application to topology optimization considering the stress constraints. Solving topology optimization problems with stress constraints is difficult owing to singularities, the local nature of stress constraints, and nonlinearity with respect to design variables. To solve the singularity problem, the stress relaxation technique is used, and p-norm for stress constraints is applied instead of local stresses for global stress measures. To overcome the nonlinearity of the design variables in stress constraint problems, it is important to analytically obtain the exact design sensitivity. In conventional topology optimization, design sensitivity is obtained efficiently and accurately using the adjoint variable method; however, obtaining the design sensitivity analytically and additionally solving the adjoint equation is difficult. To address this problem, the design sensitivity is obtained using a backpropagation technique that is used to determine optimal weights and biases in the artificial neural network, and it is applied to the topology optimization with the stress constraints. The backpropagation technique is used in automatic differentiation and can simplify the calculation of the design sensitivity for the objectives or constraint functions without complicated analytical derivations. In addition, the backpropagation process is more computationally efficient than solving adjoint equations in sensitivity calculations.

Optimum Design of the Intake Tower of Rerervoir -With Application of Strength Design Method- (저수지 취수탑의 최적설계에 관한 연구(II) -강도설계법을 중심으로-)

  • 김종옥;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.82-94
    • /
    • 1988
  • A growing attention has been paid to the optimum design of structures in recent years. Most studies on the optimum design of reinforced concrete structures has been mainly focussed to the design of structural members such as beams, slabs and columns, and there exist few studies that deal with the optimum design of large-scale concrete shell structures. The purpose of the present investigation is, therefore, to set up an efficient optimum design method for the large-scale reinforced concrete cylindrical shell structures like intake tower of reservoir. The major design variables are the dimensions and steel areas of each member of structures. The construction cost which is compo8ed of the concrete, steel, and form work costs, respectively, is taken as the objective function. The constraint equations for the design of intake-tower are derived on the basis of strength design method. The results obtained are summarized as follows 1. The efficient optimlzation algorithrns which can execute the automatic optimum design of reinforced concrete intake tower based on the strength design method were developed. 2. Since the objective function and design variables were converged to their optimum values within the first or second iteration, the optimization algorithms developed in this study seem to be efficient and stable. 3. When using the strength design method, the construction cost could be saved about 9% compared with working stress design method. Therefore, the reliability of algorithm was proved. 4. The difference in construction cost between the optimum designs with substructures and with entire structure was found to be small and thus the optimum design with substructures may conveniently be used in practical design. 5. The major active constraints of each structural member were found to be the 'bending moment constraint for slab, the minimum longitudinal steel ratio constraint for tower body and the shearing force, bending moment and maximum eccentricity constraints for footing, respectively. 6. The computer program developed in the present study can be effectively used even by an uneiperienced designer for the optimum design of reinforced concrete intake-tower on the basis of strength design method.

  • PDF

Optimization of a Nuclear Fuel Spacer Grid Using Considering Impact and Wear with Homology Constraints (호몰로지 조건을 이용하여 충격과 마모를 고려한 원자로 핵연료봉 지지격자의 최적설계)

  • Lee, Hyun-Ah;Kim, Chong-Ki;Song, Kee-Nam;Park, Gyung-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.145-150
    • /
    • 2007
  • The spacer grid set is a component in the nuclear fuel assembly. The set supports the fuel rods saftely. Therefore, the spacer gl1d set should have sufficient strength for the external impact forces. The fretting wear occurs between the spring of the fuel rod and the spacer grid due to tile flow-induced vibration. The conceptual design of the spacer grid set is performed based on the Independence Axiom of axiomatic design. Two functional requirements are defined and corresponding design parameters are selected. The overall flow of the design is defined according to the application of axiomatic design. The design for the impact load is carried out by using nonlinear dynamic analysis to determine the length of the dimple. Topology optimization is carried out to determine a new configuration of the spring. The fretting wear is reduced by shape optimization using the homology theory. In the design to reduce the fretting wear, the deformed shape of the spring should be the same as that of the fuel rod. This condition is transformed to a function and considered as a constraint in the shape optimization process. The fretting wear is expected to be reduced due to the homology constraint. The objective function is minimizing the maximum stress to allow a slight plastic deformation. Shape optimization results are confirmed through nonlinear static analysis because the contact area becomes wider.

  • PDF