• Title/Summary/Keyword: Structural Acoustics

Search Result 35, Processing Time 0.023 seconds

NOISE REFINEMENT OF A VEHICLE BY REDUCTION OF THE AXLE GEAR WHINE NOISE BASED ON STRUCTURAL MODIFICATION USING FEM AND BEM

  • Kim, S.J.;Lee, J.Y.;Lee, S.K.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.605-614
    • /
    • 2007
  • This paper presents the research results for the reduction of a gear whine noise based on experimental and analytic methods. The test vehicle has a whine noise problem at the passenger seats in a sport utility vehicle. To identify the transfer path of the interior noise due to the axle system, a vibration path analysis, modal analysis and operational deflection shape analysis are systematically employed. By using these various methods, it has been found that the interior noise generated by the axle system was airborne noise. To reduce and predict the whine generated by the axle system, structural modifications for the axle system are performed by using FEM and BEM techniques. The structural modification of the axle cover is suggested for the reduction of whine noise.

Structural Modification for Vehicle Interior Noise Reduction Using Vibration Response Sensitivity Analysis

  • Park, Yong-Hwa;Cheung, Wan-Sup;Park, Youn-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3E
    • /
    • pp.3-11
    • /
    • 2000
  • A structural modification technique for reducing structure-borne noise of vehicles using a sensitivity analysis is suggested. To estimate the noises generated by the vibration response, a semi structure-acoustic coupling analysis was exploited. As a result of the coupling analysis, severe noise generating positions are identified whose vibrations should be cured through structural modifications. Formulation for the sensitivity analysis of those severe vibration responses with respect to the design changes is derived to enhance the vibration response. Special attention is given in this paper to the use of the experimentally measured vibration responses in the sensitivity analysis. As a result of the proposed method, the structural modifications can be peformed accurately by using experimental data instead of using the finite element method though the higher vibration modes are considered as long as the vibration measurement and acoustic mode calculations are accurate. Effectiveness of this method was examined using an example model by experiments.

  • PDF

Numerical investigations on the turbulence driven responses of a plate in the subcritical frequency range

  • De Rosa, S.;Franco, F.;Gaudino, D.
    • Wind and Structures
    • /
    • v.15 no.3
    • /
    • pp.247-261
    • /
    • 2012
  • Some numerical investigations are presented concerning the response of a given plate under turbulence driven excitations. Three different input loads are simulated according to the wall pressure distributions derived from the models proposed by Corcos, Efimtsov and Chase, respectively. Modal solutions (finite element based) are used for building the modal stochastic responses in the sub-critical aerodynamic frequency range. The parametric investigations concern two different values of the structural damping and three values of the boundary layer thickness. A final comparison with available experimental data is also discussed. The results demonstrate that the selection of the adequate TBL input model is still the most critical step in order to get a good prediction.

An investigation on the vibrations of laminated shells under aeroacoustic loads using a WFE approach

  • Errico, Fabrizio;Franco, F.;Ichchou, M.;De Rosa, S.;Petrone, G.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.6
    • /
    • pp.463-478
    • /
    • 2019
  • The present work investigates the effect on the flow-induced vibrations of the lay-up sequence of composite laminated axisymmetric structures, using an hybrid approach based on a wave finite element and a transfer matrix method. The structural vibrations, under deterministic distributed pressure loads, diffuse acoustic field and turbulent boundary layer excitations, are analysed and compared. A multi-scale approach is used for the dynamic analysis of finite structures, using an elementary periodic subsystem. Different flow regimes and shell curvatures are analysed and the computational efficiency is also discussed.

Advanced Computational Dissipative Structural Acoustics and Fluid-Structure Interaction in Low-and Medium-Frequency Domains. Reduced-Order Models and Uncertainty Quantification

  • Ohayon, R.;Soize, C.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.127-153
    • /
    • 2012
  • This paper presents an advanced computational method for the prediction of the responses in the frequency domain of general linear dissipative structural-acoustic and fluid-structure systems, in the low-and medium-frequency domains and this includes uncertainty quantification. The system under consideration is constituted of a deformable dissipative structure that is coupled with an internal dissipative acoustic fluid. This includes wall acoustic impedances and it is surrounded by an infinite acoustic fluid. The system is submitted to given internal and external acoustic sources and to the prescribed mechanical forces. An efficient reduced-order computational model is constructed by using a finite element discretization for the structure and an internal acoustic fluid. The external acoustic fluid is treated by using an appropriate boundary element method in the frequency domain. All the required modeling aspects for the analysis of the medium-frequency domain have been introduced namely, a viscoelastic behavior for the structure, an appropriate dissipative model for the internal acoustic fluid that includes wall acoustic impedance and a model of uncertainty in particular for the modeling errors. This advanced computational formulation, corresponding to new extensions and complements with respect to the state-of-the-art are well adapted for the development of a new generation of software, in particular for parallel computers.

Analytical similitudes applied to thin cylindrical shells

  • De Rosa, Sergio;Franco, Francesco
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.4
    • /
    • pp.403-425
    • /
    • 2015
  • This work is focused on the definition and the analysis of both complete and incomplete similitudes for the dynamic responses of thin shells. Previous numerical and experimental investigations on both structural and structural-acoustic systems motivated this further analysis, mainly centred on the incomplete (distorted) similitudes. These similitudes and the associated scaling laws are defined by using the classical modal approach (CMA) and by invoking also the Energy Distribution Approach (EDA) in order to take into account both the cinematic and energetic items. The whole procedure is named SAMSARA: Similitude and Asymptotic Models for Structural-Acoustic Research and Applications. A brief summary of the procedure is herein given and the attention is paid to the analytical models of thin stiffened and unstiffened cylindrical shells. By using the well-known smeared model, the stiffened cylinder equations are used as general framework to analyse the possibility to define exact (replicas) or distorted similitudes (avatars). Despite the extreme simplicity of the proposed models, the results are really encouraging. The final aim is to define equivalent models to be used in laboratory measurements.

Study on Sound Transmission through a Panel including Structural Vibration (구조 진동을 고려한 평판 구조물 음향 투과 특성 연구)

  • Chang, Woo-Suk;Kim, Won-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.811-816
    • /
    • 2011
  • This study includes investigation on sound transmission phenomena through a structural panel including structural vibration and feedback control methodology to minimize the transmission. Focus is placed on finding the relation between vibration pattern and sound transmission, and on finding optimal sensor and actuator location. A simple analog feedback control circuit is designed and implemented to verify the approach.

  • PDF

The Analysis of Transmission Characteristics of Closed Structure with Internal Source Using FEM/BEM (유한.경계요소법을 이용한 내부음원을 갖는 닫힌 구조물의 차음 특성 해석)

  • Won, Sung-Gyu;Jung, Weui-Bong;Seo, Yeung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.318-321
    • /
    • 2005
  • In vibro-acoustic analysis, the commercial CAE tools, such as SYSNOISE, is usually used to take into account of the coupled effects of fluid acoustics and structural vibration. The acoustic field can be solved by either FEM or BEM, while the vibration field is usually solved by FEM. The interior or exterior acoustic problems with the coupled effects of the structural boundary could be solved by the commercial tools. The commercial tools, however, could not solve the problems in case that both the interior and exterior acoustic field is coupled with the structural boundary. In this paper, a realistic method based on FEM/BEM coupling scheme is presented to analyze the acoustic radiation from the internal source in a chamber to external acoustic field through elastic structural boundary. Several numerical examples are implemented to validate the developed program.

  • PDF

Visualization of Sound Field of Plate-Cavity Coupled System by Experimental Method (실험적 방법에 의한 평판-공동 연성계의 음장 가시화)

  • 김시문;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.662-668
    • /
    • 1997
  • Since the structural impedance is much greater than that of medium in the most cases, we often assume that the structure is rigid and that the structural vibration is independent of medium, i.e. we usually calculate the vibration of the structure first, and then obtain the radiation sound from it. This assumption is no longer satisfied when the structural stiffness is small or the fluid impedance is comparable to it. This situation often happens in underwater acoustics. Although many researchers have studied about structural-fluid coupling, we have difficulties in solving the problem analytically. Therefore the numerical method using powerful computation leads us to obtain the various coupling problem. To understand the physical coupling phenomena, visualization of sound field by a geometrically simple system(plate-cavity coupled system) is performed experimentally. Acoustic holographic method is used to estimate sound field.

  • PDF

Understanding the Effects of the Dispersion and Reflection of Lamb Waves on a Time Reversal Process (램파의 분산성과 파 반사가 시간반전과정에 미치는 영향의 이해)

  • Park, Hyun-Woo;Kim, Sung-Bum;Sohn, Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.89-103
    • /
    • 2009
  • This study investigates the applicability of the time reversal concept in modem acoustics to the Lamb waves, which have been widely studied for defect detection in plate-like structures. According to conventional time reversal acoustics, an input signal can be reconstructed at an excitation point if an output signal recorded at another point is reversed in the time domain and emitted back to the original source point. However, the application of a time reversal process(TRP) to Lamb wave propagations is complicated due to velocity and amplitude dispersion characteristics of Lamb waves and reflections from the boundaries of a structure. In this study, theoretical investigations are presented to better understand the time reversibility of Lamb waves. In particular, the effects of within-mode dispersion, multimode dispersion, amplitude dispersion, and reflections from boundaries on the TRP are theoretically formulated. Simple numerical case studies are conducted to validate the theoretical findings of this study.