• 제목/요약/키워드: Strong scattering

Search Result 157, Processing Time 0.023 seconds

Analysis of α + 40Ca and α + 58Ni Elastic Scatterings at Elab = 240 MeV

  • Kim, Yong Joo
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1324-1330
    • /
    • 2018
  • The elastic scatterings for the ${\alpha}+^{40}Ca$ and the ${\alpha}+^{58}Ni$ systems at $E_{lab}=240MeV$ have been analyzed within the framework of the Coulomb-modified Glauber model using two kinds of Gaussian density parameters for the target nuclei. The first one is to use Gaussian density parameters obtained from the root-mean-square radius. The second one is to use parameters calculated by matching the Gaussian density to the two-parameter Fermi density. The results with surface-matched Gaussian densities provide reasonable agreement with the experimental data, but the results without matching do not. The oscillatory structures observed in the angular distributions of both system can be interpreted as being due to the strong interference between the near-side and the far-side scattering amplitudes. The differences between the phase shifts obtained from the two methods are examined. We also investigate the effect of these differences on the differential and reaction cross sections, the transmission functions and the strong absorption radii.

A SCATTERING MECHANISM IN OYSTER FARM BY POLARIMETRIC AND JERS-l DATA

  • Lee Seung-Kuk;Won Joong Sun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.538-541
    • /
    • 2005
  • Tidal flats develop along the south coast ofthe Korean peninsula. These areas are famous for sea farming. Specially, strong and coherent radar backscattering signals are observed over oyster sea farms that consist of artificial structures. Tide height in oyster farm is possible to measure by using interferometric phase and intensity of SAR data. It is assumed that the radar signals from oyster farm could be considered as double-bouncing returns by vertical and horizontal bars. But, detailed backscattering mechanism and polarimetric characteristics in oyster farm had not been well studied. We could not demonstrate whether the assumption is correct or not and exactly understand what the properties of back scattering were in oyster farm without full polarimetric data. The results of AIRSAR L-band POLSAR data, experiments in laboratory and JERS-l images are discussed. We carried out an experiment simulating a target structure using vector network analyser (Y.N.A.) in an anechoic chamber at Niigata University. Radar returns from vertical poles are stronger than those from horizontal poles by 10.5 dB. Single bounce components were as strong as double bounce components and more sensitive to antenna look direction. Double bounce components show quasi-linear relation with height of vertical poles. As black absorber replaced AI-plate in bottom surface, double bounce in vertical pole decreased. It is observed that not all oyster farms are characterized by double bounced scattering in AIRSAR data. The image intensity of the double bounce dominant oyster farm was investigated with respect to that of oyster farm dominated by single bounce in JERS-l SAR data. The image intensity model results in a correlation coefficient (R2 ) of 0.78 in double bounce dominant area while that of 0.54 in single bouncing dominant area. This shows that double bounce dominant area should be selected for water height measurement using In8AR technique.

  • PDF

Q Estimates Using the Coda Waves in the Kyeongsang Basin (Coda 파를 이용한 경상분지에서의 Q값 추정)

  • 이기화
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.67-74
    • /
    • 1999
  • In this study, coda Q has been determined by the single scattering model in the Kyeongsang Basin region using the decay of the amplitudes of coda waves on bandpass-filtered seismograms of local microearthquakes in the frequency range 1.5~18 Hz. Reported frequency dependence of Q is of the form $Q_C=Q_O ^n$$(83.9{ll}Q_0{ll}155.9,;0.76{ll}n{ll}1.05$. Considering a model incorporating both scattering and intrinsic attenuation, and assuming that the attenuation is entirely due to the scattering loss, the minimum mean free paths are about 51~56 km and the coefficients of inelastic attenuation(${\gamma}$) are between 0.0093 and 0.0098 were found. Earthquake-station paths pass through the fault zone show high attenuation and strong frequency dependency compared to other ones.

  • PDF

Broad Wings around Hα and Hβ in the S-type Symbiotic Stars

  • Chang, Seok-Jun;Lee, Hee-Won;Lee, Ho-Gyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.86.4-87
    • /
    • 2017
  • Symbiotic stars are binary systems composed of a hot white dwarf and a mass losing giant. Many symbiotic stars are known to exhibit broad wings around Balmer emission line. We show high resolution spectra of S-type symbiotic stars, Z Andromedae and AG Draconis, obtained with the ESPaDOnS and the 3.6 m Canada-France-Hawaii Telescope, in which we find prominent broad wings around Balmer lines. We adopt Monte-Carlo technique to consider two types of wing formation mechanisms, which are Thomson scattering by free electron in H II region and Raman scattering by atomic hydrogen in H I region. We find that Thomson wings of $H{\alpha}$ and $H{\beta}$ have the same widths in the Doppler space due to the cross section independent of wavelength. In contrast, Raman $H{\alpha}$ wings are 3 times broader widths than $H{\beta}$ counterparts, which is attributed to the different cross sections and branching ratios. Our CFHT data show that $H{\alpha}$ wings of Z Andromedae and AG Draconis are broader than $H{\beta}$ wings, lending strong support to the Raman scattering origin of Balmer wings in these objects.

  • PDF

Analysis of Resonance Scattering Characteristics by Multi-layered Dielectric Gratings (다층 유전체 격자구조에 의한 공진 산란특성의 분석)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.231-236
    • /
    • 2017
  • The space harmonics generated by a plane-wave incident upon a multi-layered dielectric grating can undergo strong resonance scattering variations known as GMR(guided-mode resonance). To clarify these effects, we examine the field propagation and dispersion curve inside the grating region by using a rigorous equivalent transmission-line theory(RETT). The results show that, at the peak of a scattering resonance, the reflected mode is almost identical to a leaky wave that can be supported by the grating structure. Thus, we confirm and generalize previous research that has occurred GMR effect associated with the free-resonant character of leaky waves at multi-layered dielectric gratings. Quantitative simulation results illustrating the behavior of typical gratings are given, and the special case of normal incidence is discussed for TM mode.

Surface-Engineered Graphene surface-enhanced Raman scattering Platform with Machine-learning Enabled Classification of Mixed Analytes

  • Jae Hee Cho;Garam Bae;Ki-Seok An
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.139-146
    • /
    • 2024
  • Surface-enhanced Raman scattering (SERS) enables the detection of various types of π-conjugated biological and chemical molecules owing to its exceptional sensitivity in obtaining unique spectra, offering nondestructive classification capabilities for target analytes. Herein, we demonstrate an innovative strategy that provides significant machine learning (ML)-enabled predictive SERS platforms through surface-engineered graphene via complementary hybridization with Au nanoparticles (NPs). The hybridized Au NPs/graphene SERS platforms showed exceptional sensitivity (10-7 M) due to the collaborative strong correlation between the localized electromagnetic effect and the enhanced chemical bonding reactivity. The chemical and physical properties of the demonstrated SERS platform were systematically investigated using microscopy and spectroscopic analysis. Furthermore, an innovative strategy employing ML is proposed to predict various analytes based on a featured Raman spectral database. Using a customized data-preprocessing algorithm, the feature data for ML were extracted from the Raman peak characteristic information, such as intensity, position, and width, from the SERS spectrum data. Additionally, sophisticated evaluations of various types of ML classification models were conducted using k-fold cross-validation (k = 5), showing 99% prediction accuracy.

Analysis of Combined Conductive and Radiative Heat Transfer in a Two-Dimensional Rectangular Enclosure Using the Discrete Ordinates Method (구분종좌법에 의한 사각형매질내의 복사 및 전도열전달 해석)

  • 김택영;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.341-348
    • /
    • 1991
  • An efficient tool to deal with a multi-dimensional radiative heat transfer is in strong demand to analyze various thermal problems combined either with other modes of heat transfer or with combustion phenomena. The current study examined the discrete ordinates method (DOM) for a coupled radiative and conductive heat transfer in rectangular enclosures in which either nonscattering or scattering medium is present. The results were compared with the other benchmarked approximate solution. The efficiency and accuracy of the DOM were thus validated.

Attenuation of Coda Wave in the Southeastern Korea (한반도 남동부에서의 Coda파 감쇠)

  • 김성균
    • Economic and Environmental Geology
    • /
    • v.32 no.4
    • /
    • pp.379-384
    • /
    • 1999
  • In order to know the characteristics of attenuation of coda wave in the Kyungsang Sedimetary Basin, quality faclity factor for coda wave (coda Q) is estimated from the earthquake data recorded in the KIGAM local seismic network. Thesingle scattering model for coda wave generation is adopted is adopted in estimating coda Q. In the present study, coda Q(Qc)is estimated in the range of $\alpha$=1.5~3.0, where $\alpha$ denotes the normalized time to S-wave travel time and expressed in terms of frequency (f). The deduced function in the range of 1 to 25 Hz is Qc=36.8283$f^{1.15095}$ which represents the strong dependence of coda Q on frequency. It is found that the difference of Qc between U-D, N-S, and E-W components is negligible. This fact suports the back scattering therory that coda wave originates from scattered waves by randomly distributed heterogenities in the crust On the other hand, it is observed that the coda Q increases with increasing epicentral distence. This observation suggests that QC increases with depth.

  • PDF

Thermo-Recording for The Composite System of (Disk-Like Molecules and Liquid Crystals)

  • Jeong, Hwan-Kyeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.245-249
    • /
    • 2002
  • A (disk-like liquid crystal (DLC) monomer/liquid crystals(LCs)/chiral dopant/dichroic dye) composite was irradiated with ultraviolet (UV) light. The (DLC network/LCs/chiral dopant/dichroic dye) was formed in the homeotropically oriented smectic A(SA) phase by the surface orientation treatment and the electric field. A focal-conic texture exhibiting strong light scattering appeared in the heat-induced chiral nematic phase(N${\ast}$) of the composite upon heating. Thermo-recording in the composite system has been realized by using a He-Ne laser. The laser irradiation was induced the phase transitions from SA phase to chiral nematic(N${\ast}$) phase in the composite system.

DEVELOPMENT OF HIGH-ORDER ADAPTIVE DISCONTINUOUS GALERKIN METHOD FOR UNSTEADY FLOW SIMULATION (비정상 유동 해석을 위한 고차정확도 격자 적응 불연속 갤러킨 기법 개발)

  • Lee, H.D.;Choi, J.H.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.534-541
    • /
    • 2010
  • A high-order accurate Euler flow solver based on a discontinuous Galerkin method has been developed for the numerical simulation of unsteady flows on unstructured meshes. A multi-level solution-adaptive mesh refinement/coarsening technique was adopted to enhance the resolution of numerical solutions efficiently by increasing mesh density in the high-gradient region. An acoustic wave scattering problem was investigated to assess the accuracy of the present discontinuous Galerkin solver, and a supersonic flow in a wind tunnel with a forward facing step was simulated by using the adaptive mesh refinement technique. It was shown that the present discontinuous Galerkin flow solver can capture unsteady flows including the propagation and scattering of the acoustic waves as well as the strong shock waves.

  • PDF