• 제목/요약/키워드: Strong metal-support interaction (SMSI)

검색결과 7건 처리시간 0.024초

합성가스 생산을 위한 복합개질 반응에서 $Ni/MgO-Al_2O_3$ 촉매의 탄소 침적 저항성 향상에 관한 연구 (Enhancement of coke resistance on Ni/MgO-$Al_2O_3$ catalyst in combined $H_2O$ and $CO_2$ reforming of $CH_4$ for the syngas production)

  • 구기영;노현석;정운호;윤왕래
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.727-730
    • /
    • 2009
  • Highly active and stable nano-sized Ni catalysts supported on MgO-$Al_2O_3$ calcined from hydrotalcite-like materials have been successfully developed with a strong metal to support interaction (SMSI) to enhance the coke resistance in combined $H_2O$ and $CO_2$ reforming of $CH_4$ (CSCRM) for syngas ($H_2$/CO=2) production. The change of the surface area and NiO crystallite size with varying the pre-calcination temperature of support and Mgo content was investigated in relation to the coke resistance. As increasing the pre-calcination temperature, the surface area decreases and the metal to support interaction becomes weak. As a consequence, the coke deposition was more severe on catalysts pre-calcined at high temperature. It was concluded that highly dispersed Ni metal in the surface of Ni/MgO-$Al_2O_3$ catalyst (MgO=30 wt%) pre-calcined at $800^{\circ}C$ had a strong metal to support interaction (SMSI) resulting in an increase of coke resistance and high activity.

  • PDF

자동차 배기정화용 3원촉매정화기의 국산화 시도를 위한 촉매성분의 개발과 그 촉매 특성에 관한 연구 -WO$_3$ 및 La$_2$O$_3$조촉매성분들의 첨가에 따른 Pd/$\gamma$-Alumina 촉매들의 표면특성 변화- (Studies on the Developement of Active Components and their Charactrization of 3-Way Catalysts for Autombile Emission Control -Studies on the surface Characterstics Changes of Pd/$\gamma$-Alumina Catalysts by Addition of WO$_3$ and La$_2$O$_3$ as Promoters-)

  • 이상윤;정석진;박경석
    • 한국표면공학회지
    • /
    • 제23권2호
    • /
    • pp.30-38
    • /
    • 1990
  • For the purpose of suggesting the thermal resistant catalyst for automobile emission control, various catalysts, Pd-WO3 and PD-La2O3 systems, were charactrized before and after thermal aging. It was found that La2O3 formed amorphous surface compound on the support by strong metal-support interaction(SMSI). And by Temperature Programmed Desorption (TPD) expeiment, it was found that the distribution of acid site which is strong acid sites by adding the promoters. After thermal aging, it was observed that the acidity of Pd-WO3 system was decreased largely because of losing acid site by metal vaporization. On the other hand, there was pretty small change in the properties of matter of Pd-La2O3 system. Therefore, it could be considered that La2O3 formed heat resisting amorphous surface compound on the support by SMSI.

  • PDF

Chemical Doping of $TiO_2$ with Nitrogen and Fluorine and Its Support Effect on Catalytic Activity of CO Oxidation

  • Chakravarthy, G. Kalyan;Kim, Sunmi;Kim, Sang Hoon;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.142.2-142.2
    • /
    • 2013
  • The effect of substrate on catalytic activity of CO oxidation with transition metal Platinum nanoparticles on doped and undoped TiO2 was investigated. Titanium dioxide was doped chemically with non-metal anions including nitrogen and fluorine. Undoped TiO2 was synthesized via simple conventional sol-gel route. Thin films of titania were developed by spin coating technique and the characterization techniques SEM, XRD, UV-Vis Absorption Spectroscopy and XPS were carried out to examine the morphology of films, crystal phase, crystallites, optical properties and elemental composition respectively. XPS analysis from doped TiO2 confirmed that the nitrogen site were interstitial whereas fluorine was doped into TiO2 lattice substitutionally. Catalytic activity systems of Pt/doped-TiO2 and Pt/undoped-TiO2 were fabricated to reveal the strong metal-support interaction effect during catalytic activity of CO oxidation reactions. By arc plasma deposition technique, platinum nanoparticles with mean size of 2.7 nm were deposited on the thin films of doped and undoped titanium dioxide. The CO oxidation was performed with 40 Torr CO and 100 Torr O2 with 620 Torr He carrier gas. Turn over frequency was observed two to three folds enhancement in case of Pt/doped TiO2 as compared to Pt/TiO2. The electronic excitation and the oxygen vacancies that were formed with the doping process were the plausible reasons for the enhancement of catalytic activity.

  • PDF

Support Effect of Arc Plasma Deposited Pt Nanoparticles/TiO2 Substrate on Catalytic Activity of CO Oxidation

  • Qadir, Kamran;Kim, Sang Hoon;Kim, Sun Mi;Ha, Heonphil;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.261-261
    • /
    • 2013
  • The smart design of nanocatalysts can improve the catalytic activity of transition metals on reducible oxide supports, such as titania, via strong metal-support interactions. In this work, we investigatedtwo-dimensional Pt nanoparticle/titania catalytic systems under the CO oxidation reaction. Arc plasma deposition (APD) and metal impregnation techniques were employed to achieve Pt nanoparticle deposition on titania supports, which were prepared by multitarget sputtering and sol-gel techniques. APD Pt nanoparticles with an average size of 2.7 nm were deposited on sputtered and sol-gel-prepared titania films to assess the role of the titania support on the catalytic activity of Pt under CO oxidation. In order to study the nature of the dispersed metallic phase and its effect on the activity of the catalytic CO oxidation reaction, Pt nanoparticles were deposited in varying surface coverages on sputtered titania films using arc plasma deposition. Our results show an enhanced activity of Pt nanoparticles when the nanoparticle/titania interfaces are exposed. APD Pt shows superior catalytic activity under CO oxidation, as compared to impregnated Pt nanoparticles, due to the catalytically active nature of the mild surface oxidation and the active Pt metal, suggesting that APD can be used for large-scale synthesis of active metal nanocatalysts.

  • PDF

M(1)-Ni(5)/AlCeO3 (M = La, Ce, Y) 촉매상에서 수소 제조를 위한 메탄의 부분산화반응에서 La의 효과 (Effect of La in Partial Oxidation of Methane to Hydrogen over M(1)-Ni(5)/AlCeO3 (M = La, Ce, Y) Catalysts)

  • 서호준
    • 공업화학
    • /
    • 제30권6호
    • /
    • pp.757-761
    • /
    • 2019
  • 고정층 상압 유통식 반응기를 사용하여 M(1)-Ni(5)/AlCeO3 (M = La, Ce, Y) 촉매상에서 메탄의 부분 산화 반응을 수행하여 수소의 수율을 조사하였다. XRD 분석으로 반응 전과 반응 후의 환원된 La(1)-Ni(5)/AlCeO3 촉매의 결정상 특성피크를 조사하였고 FESEM과 EDS 분석으로 La, Ni, Ce 금속 입자가 촉매 표면상에 균일하게 분포하고 있음을 조사하였다. XPS 분석으로 촉매 표면상에 O2-, O22-의 산소와 Ce3+, Ce4+, La3+, Ni2+ 등의 이온이 존재함을 알 수 있었고, Ni(5)/AlCeO3 촉매에 1 wt%의 La를 첨가하면 Ni2p3/2과 Ce3d5/2의 원자가 각각 52.7과 6.3%로 증가하였다. La(1)-Ni(5)/AlCeO3 촉매상에서 수소의 수율은 89.1%이었으며, M(1)-Ni(5)/AlCeO3 (M = Ce, Y)보다 매우 우수하였다. AlCeO3이 산소와 반응하여 만들어진 CeO2의 Ce4+ 이온이 La3+로 치환됨으로서 격자에 산소 빈자리를 만들고 strong metal-support interaction (SMSI) 효과로 Ni 원자의 분산을 증가시켜 수소 수율를 향상시켰다.

Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Eu, Pr, Tb) 촉매상에서 수소제조를 위한 메탄의 부분 산화 반응에서 Eu의 효과 (Effect of Eu in Partial Oxidation of Methane to Hydrogen over Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Eu, Pr, and Tb) Catalysts)

  • 서호준
    • 공업화학
    • /
    • 제32권4호
    • /
    • pp.478-482
    • /
    • 2021
  • 고정층 상압 유통식 반응기를 사용하여 Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Eu, Pr, Tb) 촉매상에서 메탄의 부분 산화 반응을 수행하여 수소의 수율을 조사하였다. X-ray photoelectron spectroscopy (XPS) 분석으로 Ni(5)/SBA-15 촉매에 1 wt%의 Eu를 첨가함으로써 Eu(1)-Ni(5)/SBA-15의 O1s와 Si2p의 핵심 전자 수준의 화학적 이동이 있었으며, O1s, Ni2p3/2, Si2p의 원자의 비가 1.284, 1.298, 1.058로 증가하였다. 촉매 표면상에 O-, O2-의 산소와 Eu3+, Ni0, Ni2+, Si4+의 이온이 존재함을 알 수 있었다. Eu(1)-Ni(5)/SBA-15 촉매상에서 수소의 수율은 57.2%이었으며, Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Pr, Tb)보다 우수한 수소 수율을 보여주었고 25 h의 반응에서 안정된 촉매 활성을 유지하였다. Eu를 Ni(5)/SBA-15에 1wt%를 첨가함으로서 금속과 담체 간에 강한 상호 작용에 의한 SMSI 효과로 산소 빈자리를 만들고 촉매 표면상에 Ni0, N2+의 나노입자의 분산을 증가시켜 촉매 활성을 유지시켰다.

가혹한 조건의 SRM 반응에서 Ni-Ce0.8Zr0.2O2 촉매의 소성온도에 따른 영향 (The Effect of Calcination Temperature on the Performance of Ni-Ce0.8Zr0.2O2 Catalysts for Steam Reforming of Methane under Severe Conditions)

  • 장원준;정대운;심재오;노현석
    • 한국수소및신에너지학회논문집
    • /
    • 제23권3호
    • /
    • pp.213-218
    • /
    • 2012
  • Steam reforming of methane (SRM) is the primary method to produce hydrogen. Commercial Ni-based catalysts have been optimized for SRM with excess steam ($H_2O/CH_4$ > 2.5) at high temperatures (> $700^{\circ}C$). However, commercial catalysts are not suitable under severe conditions such as stoichiometric steam over methane ratio ($H_2O/CH_4$ = 1.0) and low temperature ($600^{\circ}C$). In this study, 15wt.% Ni catalysts supported on $Ce_{0.8}Zr_{0.2}O_2$ were prepared at various calcination temperatures for SRM at a very high gas hourly space velocity (GHSV) of $621,704h^{-1}$. The calcination temperature was systematically varied to optimize 15wt.% $Ni-Ce_{0.8}Zr_{0.2}O_2$ catalyst at a $H_2O/CH_4$ ratio of 1.0 and at $600^{\circ}C$. 15wt.% $Ni-Ce_{0.8}Zr_{0.2}O_2$ catalyst calcined at $500^{\circ}C$ exhibited the highest $CH_4$ conversion as well as stability with time on stream. Also, 15wt.% $Ni-Ce_{0.8}Zr_{0.2}O_2$ catalyst calcined at $500^{\circ}C$ showed the highest $H_2$ yield (58%) and CO yield (21%) among the catalysts. This is due to complex NiO species, which have relatively strong metal to support interaction (SMSI).