• Title/Summary/Keyword: Strong magnetic field

검색결과 256건 처리시간 0.028초

SONDRESTROM 비간섭 산란 레이더 자료를 이용한 극지방 전리층의 기후학적 특성 연구 (CLIMATOLOGICAL CHARACTERISTICS OF THE POLAR IONOSPHERE BASED ON THE SONDRESTROM INCOHERENT SCATTER RADAR MEASUREMENTS)

  • 곽영실;안병호
    • Journal of Astronomy and Space Sciences
    • /
    • 제19권1호
    • /
    • pp.75-88
    • /
    • 2002
  • 전리층의 전기 전도도와 전기장을 구함으로써 극지방 전리층의 기후학적 특성을 살펴보았다 이를 위해, 총 109일간의 Sondrestrom 비간섭 산란 레이더 자료를 이용하였다. 전기 전도도와 전기장을 이용하여 전리층 전류 분포를 추정하였고, 구해진 전리층 전류 밀도와 그로 인해 유발되는 지상 지자기 변화를 비교하였다. 또한 지상 지자기 변화(특히, D 성분)에 대한 연자기력선 전류의 효과도 검토되었다. Sondrestrom 상공 전리층에 대한 몇 가지 흥미로운 기후학적 특성을 본 연구로부터 알 수 있었다: (1) 주간의 전기 전도도 분포는 주로 태양 EUV복사에 의한 것이며, 야간에는 미약하다. (2) 극관 영역 전리층의 전기 전도도 분포는, 주간에는 태양 EUV복사에 의한 분포를 보이는 반면, 야간에는 Hall 및 Pedersen 전기 전도도의 시간 평균이 각각 1.6 및 1.2 siemen으로 아주 낮다. (3) 남북 성분 전기장의 최대치가 낮 영역에 나타나는 경향이 있다. 동서 성분 전기장은 Chatanika에 비해 강하다 (4) 동서 성분 전류는 낮 영역에서 강하게 흐른다. 정오 바로 전에 강한 남향 전류가 흐른다. (5) 오로라제트전류와 동시에 관측된 지상 지자기 변화 $({{\Delta}}H)$ 사이에 높은 상관관계를 나타낸다. 하지만 무한판상을 가정한 전류가 크게 과소평가 된다. 또한 ${{\Delta}}H$의 관계보다 더 높게 나타나며, 이것은 연자기력선 전류가 ${\Delta}7$에 영향을 미친다는 것을 의미한다.

Parameters Affecting India Ink Artifacts on Opposed-Phase MR Images

  • Kim, Bo Ra;Ha, Dong-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • 제23권4호
    • /
    • pp.341-350
    • /
    • 2019
  • Purpose: To determine the MR parameters affecting India ink artifacts on opposed-phase chemical shift magnetic resonance (MR) imaging. Materials and Methods: The use of a female Sprague-Dawley rat was approved by our Institutional Animal Care and Use Committee. Using an iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) images, which is a modified Dixon method, axial opposed-phase images of the abdominal cavity were obtained with different MR parameters: series 1, different repetition times (TRs; 400, 2000, and 4000 ms); series 2, different echo times (TEs; 10, 50, and 100 ms); series 3, different field of views (FOVs; 6, 8, 16, and 24 cm); series 4, different echo train lengths (ETLs; 2, 4, and 8); series 5, different bandwidths (25, 50, and 85); and series 6, different slice thicknesses (1, 2, 4, 8, and 16 mm). Artifacts on opposed images obtained with different parameters were compared subjectively by two radiologists. For objective analysis, the thickness of the artifact was measured. Spearman's correlation between altered MR parameters and thicknesses of India ink artifact was obtained via objective analysis. Results: India ink artifact was increasingly apparent using shorter TE, larger FOV and ETL, and thicker slices upon subjective analysis. The objective analysis revealed a strong negative correlation between the thickness of the artifact and TE (r = -0.870, P < 0.01); however, strong positive correlations were found between FOV (r = 0.854, P < 0.01) and slice thickness (r = 0.971, P < 0.01). Conclusion: India ink artifact was thicker with shorter TE, larger FOV, and larger slice thickness.

On post-buckling characteristics of functionally graded smart magneto-electro-elastic nanoscale shells

  • Asrari, Reza;Ebrahimi, Farzad;Kheirikhah, Mohammad Mahdi
    • Advances in nano research
    • /
    • 제9권1호
    • /
    • pp.33-45
    • /
    • 2020
  • Geometrically nonlinear buckling of functionally graded magneto-electro-elastic (FG-MEE) nanoshells with the use of classical shell theory and nonlocal strain gradient theory (NSGT) has been analyzed in present research. Mathematical formulation based on NSGT gives two scale coefficients for simultaneous description of structural stiffness reduction and increment. Functional gradation of material properties is described based on power-law formulation. The nanoshell is under a multi-physical field related to applied voltage, magnetic potential, and mechanical load. Exerting a strong electric voltage, magnetic potential or mechanical load may lead to buckling of nanoshell. Taking into account geometric nonlinearity effects after buckling, the behavior of nanoshell in post-buckling regime can be analyzed. Nonlinear governing equations are reduced to ordinary equations utilizing Galerkin's approach and post-buckling curves are obtained based on an analytical procedure. It will be shown that post-buckling curves are dependent on nonlocal/strain gradient parameters, electric voltage magnitude and sign, magnetic potential magnitude and sign and material gradation exponent.

Physics of Solar Flares

  • Magara, Tetsuya
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.26.1-26.1
    • /
    • 2010
  • In this talk we outline the current understanding of solar flares, mainly focusing on magnetohydrodynamic (MHD) processes. A flare causes plasma heating, mass ejection, and particle acceleration which generates high-energy particles. The key physical processes producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence), formation of current-concentrated areas (current sheets) in the corona, and magnetic reconnection proceeding in a current sheet to cause shock heating, mass ejection, and particle acceleration. A flare starts with the dissipation of electric currents in the corona, followed by various dynamic processes that affect lower atmosphere such as the chromosphere and photosphere. In order to understand the physical mechanism for producing a flare, theoretical modeling has been develops, where numerical simulation is a strong tool in that it can reproduce the time-dependent, nonlinear evolution of a flare. In this talk we review various models of a flare proposed so far, explaining key features of individual models. We introduce the general properties of flares by referring observational results, then discuss the processes of energy build-up, release, and transport, all of which are responsible for a flare. We will come to a concluding viewpoint that flares are the manifestation of the recovering and ejecting processes of a global magnetic flux tube in the solar atmosphere, which has been disrupted via interaction with convective plasma while rising through the convection zone.

  • PDF

Mn-dimer 분자자성체의 전자구조 및 자기구조 계산 (Electronic and Magnetic Structure Calculations of Mn-dimer Molecular Magnet)

  • 박기택
    • 한국자기학회지
    • /
    • 제24권4호
    • /
    • pp.97-100
    • /
    • 2014
  • 분자자성체 Mn-dimer의 전기구조 및 자기적 성질을 제1원리의 범밀도함수법을 이용하여 계산하였다. 계산 된 결과, 전자구조는 벌크 MnO와 비슷한 Mn 주위의 4개의 산소 원자에 의해 $t_{2g}$, $e_g$ 에너지 준위로 분리되어 있었다. 적은 수의 배위원자로 이 결정장 분리는 작았디. 총에너지 계산에서는 반강자성적 상호작용이 낮은 에너지를 가지고 있었다. 계산 된 $Mn^{+2}$ 원자 사이의 교환상호작용 크기는 다른 Mn-O 분자자성체보다 한 단위 큰 값을 얻었다. 이 원인은 Mn 3d 사이의 직접 상호작용과 Mn-O의 강한 결합으로 인한 초교환상호작용의 결과이다.

PARTICLE ACCELERATION IN SUPERNOVA REMNANTS

  • KANG, HYESUNG
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.545-548
    • /
    • 2015
  • Most high energy cosmic rays (CRs) are thought to be produced by diffusive shock acceleration (DSA) in supernova remnants (SNRs) within the Galaxy. Plasma and MHD simulations have shown that the self-excitation of MHD waves and amplification of magnetic fields via plasma instabilities are an integral part of DSA for strong collisionless shocks. In this study we explore how plasma processes such as plasma instabilities and wave-particle interactions can affect the energy spectra of CR protons and electrons, using time-dependent DSA simulations of SNR shocks. We demonstrate that the time-dependent evolution of the shock dynamics, the self-amplified magnetic fields and $Alfv{\acute{e}nic$ drift govern the highest energy end of the CR energy spectra. As a result, the spectral cutoffs in nonthermal X-ray and ${\gamma}$-ray radiation spectra are regulated by the evolution of the highest energy particles, which are injected at the early phase of SNRs. We also find that the maximum energy of CR protons can be boosted significantly only if the scale height of the magnetic field precursor is long enough to contain the diffusion lengths of the particles of interests. Thus, detailed understandings of nonlinear wave-particle interactions and time-dependent DSA simulations are crucial for understanding the nonthermal radiation from CR acceleration sources.

First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps

  • Maidana, Carlos O.;Nieminen, Juha E.
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.82-91
    • /
    • 2017
  • Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is a source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.

Physics of Solar Flares

  • Magara, Tetsuya
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2010년도 한국우주과학회보 제19권1호
    • /
    • pp.25.1-25.1
    • /
    • 2010
  • This talk outlines the current understanding of solar flares, mainly focusing on magnetohydrodynamic (MHD) processes. A flare causes plasma heating, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes related to a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence), formation of current-concentrated areas (current sheets) in the corona, and magnetic reconnection proceeding in current sheets that causes shock heating, mass ejection, and particle acceleration. A flare starts with the dissipation of electric currents in the corona, followed by various dynamic processes which affect lower atmospheres such as the chromosphere and photosphere. In order to understand the physical mechanism for producing a flare, theoretical modeling has been developed, in which numerical simulation is a strong tool reproducing the time-dependent, nonlinear evolution of plasma before and after the onset of a flare. In this talk we review various models of a flare proposed so far, explaining key features of these models. We show observed properties of flares, and then discuss the processes of energy build-up, release, and transport, all of which are responsible for producing a flare. We come to a concluding view that flares are the manifestation of recovering and ejecting processes of a global magnetic flux tube in the solar atmosphere, which was disrupted via interaction with convective plasma while it was rising through the convection zone.

  • PDF

Interferometric Monitoring of Gamma-Ray Bright AGNs: 4C +28.07 and Its Synchrotron Self-Absorption Spectrum

  • Myoung-Seok Nam;Sang-Sung Lee;Whee Yeon Cheong
    • 천문학회지
    • /
    • 제56권2호
    • /
    • pp.231-252
    • /
    • 2023
  • We present the analysis results of the simultaneous multifrequency observations of the blazar 4C +28.07. The observations were conducted by the Interferometric Monitoring of Gamma-ray Bright Active Galactic Nuclei (iMOGABA) program, which is a key science program of the Korean Very Long Baseline Interferometry (VLBI) Network (KVN). Observations of the iMOGABA program for 4C +28.07 were conducted from 16 January 2013 (MJD 56308) to 13 March 2020 (MJD 58921). We also used γ-ray data from the Fermi Large Array Telescope (Fermi-LAT) Light Curve Repository, covering the energy range from 100 MeV to 100 GeV. We divided the iMOGABA data and the Fermi-LAT data into five periods from 0 to 4, according to the prosody of the 22 GHz data and the presence or absence of the data. In order to investigate the characteristics of each period, the light curves were plotted and compared. However, a peak that formed a hill was observed earlier than the period of a strong γ-ray flare at 43-86 GHz in period 3 (MJD 57400-58100). Therefore, we assumed that the minimum total CLEANed flux density for each frequency was quiescent flux (Sq) in which the core of 4C +28.07 emitted the minimum, with the variable flux (Svar) obtained by subtracting Sq from the values of the total CLEANed flux density. We then compared the variability of the spectral indices (α) between adjacent frequencies through a spectral analysis. Most notably, α22-43 showed optically thick spectra in the absence of a strong γ-ray flare, and when the flare appeared, α22-43 became optically thinner. In order to find out the characteristics of the magnetic field in the variable region, the magnetic field strength in the synchrotron self-absorption (BSSA) and the equipartition magnetic field strength (Beq) were obtained. We found that BSSA is largely consistent with Beq within the uncertainty, implying that the SSA region in the source is not significantly deviated from the equipartition condition in the γ-ray quiescent periods.

NiFeCo/Cu/Co 삼층막의 자기저항 메모리 특성에 관한 연구 (A Study on the Magnetoresistive RAM (MRAM) Characteristics of NiFeCo/Cu/Co Trilayers)

  • 김형준;이병일;주승기
    • 한국자기학회지
    • /
    • 제7권3호
    • /
    • pp.152-158
    • /
    • 1997
  • Ni$_{66}$Fe$_{16}$ $Co_{18}$ /Cu/Co 삼층막을 4 .deg. tilt-cut Si(111) 기판과 Cu(50 .angs. ) 바닥층 위에 형성하고, 사진식각 및 에칭 작업을 통해 자기저항 메모리 소자를 제작하여 자기저항 메모리 특성을 연구하였다. 외부 자장의 인가 없이 증착한 NiFeCo/Cu/Co 삼층막은 4 .deg. tilt-cut Si(111) 기판과 Cu(50 .angs. ) 바닥층의 영향으로 면내 일축자기이방성을 형성하였으며, 낮은 자장 내에서 높은 자기저항비와 자기저항민감도 등 자기저항 메모리 소자에 응용이 가능한 우수한 자기저항 특성을 나타내었다. NiFeCo/Cu/Co 삼층막의 Cu 사잇층 두께 변화에 따라 삼층막을 이루는 두 자성층 간에 강자성 및 반강자성 결합력이 관찰되었으며, 결합력은 사잇층 두께에 민감하게 변화하여 NiFeCo/Cu/Co 삼층막의 메모리 특성에 영향을 끼쳤다. 사잇층 두께의 변화에 대해 최적화된 [NiFeCo(60 .angs. )/Cu(25 .angs. )/Co(30 .angs. )]/Cu(50 .angs. )/Si(111, 4 .deg. tilt-cut) 스핀밸브 삼층막을 이용하여 거시적 자기저항 메모리 소자를 제작하고, 시험 소자의 메모리 동작에 대해 관찰하였다. Sense 전류는 10 mA로 고정하고, 약 5 * $10^{5}$ A/$cm^{2}$의 word 전류를 가해 약 10 mV의 출력 전압을 시험 소자에서 얻었으며, NiFeCo/Cu/Co 스핀밸브 삼층막의 자기저항 메모리 소자에의 응용 가능성을 확인할 수 있었다.다.

  • PDF