• Title/Summary/Keyword: Strong axis

Search Result 318, Processing Time 0.059 seconds

Calculation of NMR Shift in Paramagnetic System when the Threefold Axis is Chosen as the Quantization Axis (Ⅲ). The NMR Shift for 3d$^2$ System in a Strong Crystal Field of Octahedral Symmetry

  • Sang Woon Ahn;Se Woong Oh;Kee Hag Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.3
    • /
    • pp.93-97
    • /
    • 1984
  • A general expression using the nonmultipole expansion method is derived for the NMR shift arising from 3d electron angular momentum and the 3d electron spin dipolar-nuclear spin angular momentum interactions for a 3$d^2$ system in a strong crystal field environment of octahedral symmetry when the threefold axis is chosen as the quantization axis. The NMR shift is separated to the contribution of constant, $1/R^5\;and\;1/R^7$ terms and compared with the multipolar terms. We find that $1/R^5$ term contributes dominantly to the NMR shift but the contribution of $1/R^7$ term may not be negligible. It is also found that the exact values of the NMR shift are in agreement with the multipolar results for distances larger than 0.35 nm.

NMR Chemical Shift for a 4d$^1$ system when the Threefold Axis is Chosen to be the Axis of Quantization

  • Ahn, Sang-Woon;Yuk, Geun-Young;Ro, Seung-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.2
    • /
    • pp.89-96
    • /
    • 1986
  • The NMR chemical shift arising from 4d electron angular momentum and 4d electron spin dipolar-nuclear spin angular momentum interaction for a $4d^1$ system in a strong crystal field of octahedral symmetry, when the threefold axis is chosen as the quantization axis, has been investigated. A general expression using a nonmultipole expansion method is derived for the NMR chemical shift. From this expression all the multipolar terms are determined. We find that the nonmultipolar results for the NMR chemical shift ${\Delta}B$, is exactly in agreement with the multipolar results when $R {\ge} 0.20$ nm. It is also found that the 1/$R^7$ term contributes to the NMR chemical shift almost the same as the 1/$R^5$ in magnitude. The temperature dependence analysis of ${\Delta}B$/B(ppm) at various values of R shows that the 1/$T^2$ term has the dominant contribution to the NMR chemical shift but the contributions of other two terms are certainly significant for a $4d^1$ system in a strong crystal field of octahedral symmetry when the threefold axis is chosen to be the axis of quantization.

The Structural Behavior of Strong Axis Connections by Type of Weak Axis Connection - In Case of Loading Gravity Load - (약축 접합부 형식에 따른 강축 접합부의 구조적 거동 - 연직하중이 작용하는 경우 -)

  • Kim, Sang Seup;Lee, Do Hyung;Ham, Jeong Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.275-284
    • /
    • 2004
  • The behavior of the connection for beam-to-column weak axis connection and its details should be identified. Thus, each element is considered a panel zone, and the horizontal stiffener's presence or absence and position in bracket-type welding connection are used as variables to compare the behavior of strong axis connection and weak axis connection. In this study, the strength of connection is calculated by substituting the simple beam-strengthened vertical stiffeners for connection in the presence of horizontal stiffeners. In the absence of horizontal stiffeners, the strength of connection can be calculated using local flange bending strength considering local web yielding strength, web crippling, and web buckling strength. The results of the theoretical analysis and experiments are compared.

Calculation of the Magnetic Moments and the Dipolar Shifts for d$^1$ and d$^2$Complexes in a Strong Ligand Field of Trigonal Symmetry

  • Ahn, Sang-Woon;Suh, Hyuk-Choon;Ko, Jeong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.3
    • /
    • pp.104-109
    • /
    • 1982
  • A method to calculate the magnetic moments for $d^1$ and $d^2$ complexes in a strong crystal field of trigonal symmetry has been developed in this work choosing the trigonal axis (Ⅲ) as the quantization axis. The calculated magnetic moments using this method for $d^1$ and $d^2$ complexes in a strong trigonal ligand field fall in the range of the experimental values. The dipolar shifts for $d^1$ and $d^2$ complexes in a strong trigonal ligand field are also calculated using the calculated magnetic susceptibility components. The calculated values of the dipolar shifts also fall in the reasonable range.

Calculation of NMR Shift in Paramagnetic System When the Threefold Axis is Chosen as the Quantization Axis (Ⅰ). The NMR Shift for a 3d$^1$ System in a Strong Crystal Field of Octahedral Symmetry

  • Ahn, Sang-woon;Park, Euisuh;Lee, Kee-Hag
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.3
    • /
    • pp.103-114
    • /
    • 1983
  • The NMR shift arising from the electron angular momentum and the electron spin dipolar-nuclear spin angular momentum interaction has been examined for a $3d_1$ system in a strong octahedral crystal field when the threefold axis is chosen as the quantization axis. To investigate the NMR shift in this situation, first, we have extended the evaluation of the hyperfine integrals to any pairs of 3d orbitals adopting a general method which is applicable to a general vector R, pointing in arbitrary direction in space. Secondly, a general expression using a nonmultipole technique is derived for the NMR shift resulting from the electron angular momentum and the electron spin dipolar-nuclear spin angular momentum interactions. From this expression all the multipolar terms are determined. ${\Delta}B/B$ for the $3d_1$ system in this case is compared with that for the 3d1 system when the z axis is chosen as the quantization axis. When we choose the threefold axis as the quantization axis, it is found that along the , and axes, ${\Delta}B/B$ values are significantly different from each other and along the , <-1-1-1>, <-11-1>, , <-1-11>, , and <-111> axes, ${\Delta}B/B$ values are however the same. We also find that the 1/R7 term contributes dominantly to the NMR shift for all values of R. When 1/$R^5$ term is included, there is good agreement between the exact solution and the multipolar terms when $R\; {\leqslant}\;0.35\;nm.$.

Calculation of the NMR Cheimical Shift for a 4d$^1$ System in a Strong Crystal Field Environment of Trigonal Symmetry with a Threefold Axis of Quantization

  • Ahn, Sang-Woon;Oh, Se-Woung;Ro, Seung-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.3
    • /
    • pp.170-178
    • /
    • 1986
  • The NMR chemical shift arising from 4d electron angular momentum and 4d electron angular momentum and 4d electron spin dipolar-nuclear spin angular momentum interactions for a $4d^1$ system in a strong crystal field environment of trigonal symmetry, when the threefold axis is chosen to be the axis of quantization axis, has been examined. A general expression using the nonmultipole expansion method (exact method) is derived for the NMR chemical shift. From this expression all the multipolar terms are determined. We observe that along the (100), (010), (110), and (111) axes the NMR chemical shifts are positive while along the (001) axis, it is negative. We observe that the dipolar term (1/R3) is the dominant contribution to the NMR chemical shift except for along the (111) axis. A comparison of the multipolar terms with the exact values shows also that the multipolar results are exactly in agreement with the exact values around $R{\geqslant}0.2$ nm. The temperature dependence analysis on the NMR chemical shifts may imply that along the (111) axis the contribution to the NMR chemical shift is dominantly pseudo contact interaction. Separation of the contributions of the Fermi and the pseudo contact interactions would correctly imply that the dipolar interaction is the dominant contribution to the NMR chemical shifts along the (100), (010), (001), and (110) axes, but along the (111) axis the Fermi contact interaction is incorrectly the dominant contribution to the NMR chemical shift.

Flexural Characteristics of Model Composite Deck Fabricated with VARTM (진공성형 제작 모델 복합소재 바닥판의 실험적 휨 거동특성 분석)

  • Lee Sung-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.4 s.70
    • /
    • pp.417-426
    • /
    • 2005
  • Recent days composite bridge dock is gaining attraction due to many advantages such as light weight, high strength, corrosion resistance, and high durability. In this study, composite deck models of hat, box and triangular section type wore fabricated with VARTM Process. For these models, three point flexural tests wore carried out both in strong and weak axis. The experimental results were compared with each other to determine efficient section profile. It has been demonstrated that composite sandwich deck has strong potentials to be used as bridge deck in the new construction and rehabilitation works.

Cyclic Seismic Performance of RBS Weak-Axis Welded Moment Connections (RBS 약축 용접모멘트접합부의 내진성능 평가)

  • Lee, Cheol Ho;Jung, Jong Hyun;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.6
    • /
    • pp.513-523
    • /
    • 2015
  • In steel moment frames constructed of H-shapes, strong-axis moment connections should be used for maximum structural efficiency if possible. And most of cyclic seismic testing, domestic and international, has been conducted for strong-axis moment connections and cyclic test data for weak-axis connections is quite limited. However, when perpendicular moment frames meet, weak-axis moment connections are also needed at the intersecting locations. Especially, both strong- and weak-axis moment connections have been frequently used in domestic practice. In this study, cyclic seismic performance of RBS (reduced beam section) weak-axis welded moment connections was experimentally investigated. Test specimens, designed according to the procedure proposed by Gilton and Uang (2002), performed well and developed an excellent plastic rotation capacity of 0.03 rad or higher, although a simplified sizing procedure for attaching the beam web to the shear plate in the form of C-shaped fillet weld was used. The test results of this study showed that the sharp corner of C-shaped fillet weld tends to be the origin of crack propagation due to stress concentration there and needs to be trimmed for the better weld shape. Different from strong-axis moment connections, due to the presence of weld access hole, a kind of CJP butt joint is formed between the beam flange and the horizontal continuity plate in weak-axis moment connections. When weld access hole is large, this butt joint can experience cyclic local buckling and subsequent low cycle fatigue fracture as observed in this testing program. Thus the size of web access hole at the butt joint should be minimized if possible. The recommended seismic detailing such as stickout, trimming, and thicker continuity plate for construction tolerance should be followed for design and fabrication of weak-axis welded moment connections.

Numerical Analysis of Shock-Wave Focusing from a Two-Dimensional Parabolic Reflector (2차원 포물형 반사경에 의한 충격파의 촛점형성에 대한 수치해석)

  • 최환석;백제현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.612-623
    • /
    • 1994
  • Shock-wave focusing from a two-dimensional parabolic reflector was simulated using an explicit finite volume upwind TVD scheme. Computations were performed for three different incident shock speeds of $M_s$ = 1.1, 1.2 and 1.3, corresponding to the relatively weak, intermediate, and strong shock waves, respectively. Numerical solutions nicely resolved all the waves evolving through the focusing process. As the incident shock strength increase, a transition was observed in the shock-fronts geometry that was caused by the change in the reflection type of converging shock fronts on the axis of symmetry, from regular-type to Mach-type reflection. The computed maximum on-axis pressure amplification and the trajectories of three-wave intersections showed good agreement with experimental results. The strong nonlinear effect near the focal region which determines the shock-fronts geometries at and behind the focus and at the same time confines the pressure amplification at the focus was clearly revealed from the present numerical simulation.

Calculation of the NMR Chemical Shift for a 3d$^2$ System in a Strong Crystal Field of Octahedral Symmetry

  • Ahn, Sang-Woon;Kim, Dong-Hee;Park, Eui-Suh
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.63-67
    • /
    • 1985
  • The NMR chemical shift arising from 3d electron spin dipolar nuclear spin angular momentum interactions for a 3d$^2$ system in a strong crystal field environment of octahedral symmetry has been investigated when the fourfold axis is chosen to be our axis of quantization. The NMR shift is separated into the contribution of 1/R$^5$ and 1/R$^7$ terms. A comparision of the multipolar terms with nonmultipolar results shows that the 1/R$^5$ term contributes dominantly to the NMR shift and there is in good agreement between the exact solution and the multipolar results when R ${\ge}$ 0.25. A temperature dependence analysis may lead to the results that the 1/T$^2$ term has the dominant contribution to the NMR shift for a paramagnetic 3d$^2$ system but the contribution of the 1/T term may not be negligible.