• Title/Summary/Keyword: Strong acids

Search Result 311, Processing Time 0.032 seconds

The cooperative regulatory effect of the miRNA-130 family on milk fat metabolism in dairy cows

  • Xiaofen Li;Yanni Wu;Xiaozhi Yang;Rui Gao;Qinyue Lu;Xiaoyang Lv;Zhi Chen
    • Animal Bioscience
    • /
    • v.37 no.7
    • /
    • pp.1289-1302
    • /
    • 2024
  • Objective: There is a strong relationship between the content of beneficial fatty acids in milk and milk fat metabolic activity in the mammary gland. To improve milk quality, it is therefore necessary to study fatty acid metabolism in bovine mammary gland tissue. In adipose tissue, peroxisome proliferator-activated receptor gamma (PPARG), the core transcription factor, regulates the fatty acid metabolism gene network and determines fatty acid deposition. However, its regulatory effects on mammary gland fatty acid metabolism during lactation have rarely been reported. Methods: Transcriptome sequencing was performed during the prelactation period and the peak lactation period to examine mRNA expression. The significant upregulation of PPARG drew our attention and led us to conduct further research. Results: According to bioinformatics prediction, dual-luciferase reporter system detection, real-time quantitative reverse transcription polymerase chain reaction and Western blotting, miR-130a and miR-130b could directly target PPARG and inhibit its expression. Furthermore, triglyceride and oil red O staining proved that miR-130a and miR-130b inhibited milk fat metabolism in bovine mammary epithelial cells (BMECs), while PPARG promoted this metabolism. In addition, we also found that the coexpression of miR-130a and miR-130b significantly enhanced their ability to regulate milk fat metabolism. Conclusion: In conclusion, our findings indicated that miR-130a and miR-130b could target and repress PPARG and that they also have a functional superposition effect. miR-130a and miR-130b seem to synergistically regulate lipid catabolism via the control of PPARG in BMECs. In the long-term, these findings might be helpful in developing practical means to improve high-quality milk.

Molecular Cloning, Characterization, and Application of Organic Solvent-Stable and Detergent-Compatible Thermostable Alkaline Protease from Geobacillus thermoglucosidasius SKF4

  • Suleiman D Allison;Nur AdeelaYasid;Fairolniza Mohd Shariff; Nor'Aini Abdul Rahman
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.436-456
    • /
    • 2024
  • Several thermostable proteases have been identified, yet only a handful have undergone the processes of cloning, comprehensive characterization, and full exploitation in various industrial applications. Our primary aim in this study was to clone a thermostable alkaline protease from a thermophilic bacterium and assess its potential for use in various industries. The research involved the amplification of the SpSKF4 protease gene, a thermostable alkaline serine protease obtained from the Geobacillus thermoglucosidasius SKF4 bacterium through polymerase chain reaction (PCR). The purified recombinant SpSKF4 protease was characterized, followed by evaluation of its possible industrial applications. The analysis of the gene sequence revealed an open reading frame (ORF) consisting of 1,206 bp, coding for a protein containing 401 amino acids. The cloned gene was expressed in Escherichia coli. The molecular weight of the enzyme was measured at 28 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The partially purified enzyme has its highest activity at a pH of 10 and a temperature of 80℃. In addition, the enzyme showed a half-life of 15 h at 80℃, and there was a 60% increase in its activity at 10 mM Ca2+ concentration. The activity of the protease was completely inhibited (100%) by phenylmethylsulfonyl fluoride (PMSF); however, the addition of sodium dodecyl sulfate (SDS) resulted in a 20% increase in activity. The enzyme was also stable in various organic solvents and in certain commercial detergents. Furthermore, the enzyme exhibited strong potential for industrial use, particularly as a detergent additive and for facilitating the recovery of silver from X-ray film.

ATHEROSCLEROSIS, CHOLESTEROL AND EGG - REVIEW -

  • Paik, I.K.;Blair, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.1
    • /
    • pp.1-25
    • /
    • 1996
  • The pathogenesis of atherosclerosis can not be summarized as a single process. Lipid infiltration hypothesis and endothelial injury hypothesis have been proposed and investigated. Recent developments show that there are many points of potential interactions between them and that they can actually be regarded as two phases of a single, unifying hypothesis. Among the many risk factors of atherosclerosis, plasma homocysteine and lipoprotein(a) draw a considerable interest because they are independent indicators of atherogenicity. Triglyceride (TG)-rich lipoproteins (chylomicron and VLDL) are not considered to be atherogenic but they are related to the metabolism of HDL cholesterol and indirectly related to coronary heart disease (CHD). LDL can of itself be atherogenic but the oxidative products of this lipoprotein are more detrimental. HDL cholesterol has been considered to be a favorable cholesterol. The so-called 'causalist view' claims that HDL traps excess cholesterol from cellular membranes and transfers it to TG-rich lipoproteins that are subsequently removed by hepatic receptors. In the so-called 'noncausalist view', HDL does not interfere directly with cholesterol deposition in the arterial wall but instead reflects he metabolism of TG-rich lipoproteins and their conversion to atherogenic remnants. Approximately 70-80% of the human population shows an effective feedback control mechanism in cholesterol homeostasis. Type of dietary fat has a significant effect on the lipoprotein cholesterol metabolism and atherosclerosis. Generally, saturated fatty acids elevate and PUFA lower serum cholesterol, whereas MUFA have no specific effect. EPA and DHA inhibit the synthesis of TG, VLDL and LDL, and may have favourable effects on some of the risk factors. Phospholipids, particularly lecithin, have an antiatherosclerotic effect. Essential phospholipids (EPL) may enhance the formation of polyunsaturated cholesteryl ester (CE) which is less sclerotic and more easily dispersed via enhanced hydrolysis of CE in the arterial wall. Also, neutral fecal steroid elimination may be enhanced and cholesterol absorption reduced following EPL treatment. Antioxidants protect lipoproteins from oxidation, and cells from the injury of toxic, oxidized LDL. The rationale for lowering of serum cholesterol is the strong association between elevation of plasma or serum cholesterol and CHD. Cholesterol-lowing, especially LDL cholesterol, to the target level could be achieved using diet and combination of drug therapy. Information on the link between cholesterol and CHD has decreased egg consumption by 16-25%. Some clinical studies have indicated that dietary cholesterol and egg have a significant hypercholesterolemic effect, while others have indicated no effect. These studies differed in the use of purified cholesterol or cholesterol in eggs, in the range of baseline and challenge cholesterol levels, in the quality and quantity of concomitant dietary fat, in the study population demographics and initial serum cholesterol levels, and clinical settings. Cholesterol content of eggs varies to a certain extent depending on the age, breed and diet of hens. However, egg yolk cholesterol level is very resistant to change because of the particular mechanism involved in yolk formation. Egg yolk contains a factor of factors responsible for accelerated cholesterol metabolism and excretion compared with crystalline cholesterol. One of these factors could be egg lecithin. Egg lecithin may not be as effective as soybean lecithin in lowering serum cholesterol level due probably to the differences of fatty acid composition. However, egg lecithin may have positive effects in hypercholesterolemia by increasing serum HDL level and excretion of fecal cholesterol. The association of serum cholesterol with egg consumption has been widely studied. When the basal or control diet contained little or no cholesterol, consumption of 1 or 2 eggs daily increased the concentration of plasma cholesterol, whereas that of the normolipemic persons on a normal diet was not significantly influenced by consuming 2 to 3 eggs daily. At higher levels of egg consumption, the concentration of HDL tends to increase as well as LDL. There exist hyper-and hypo-responders to dietary (egg) cholesterol. Identifying individuals in both categories would be useful from the point of view of nutrition guidelines. Dietary modification of fatty acid composition has been pursued as a viable method of modifying fat composition of eggs and adding value to eggs. In many cases beneficial effects of PUFA enriched eggs have been demonstrated. Generally, consumption of n-3 fatty acids enriched eggs lowered the concentration of plasma TG and total cholesterol compared to the consumption of regular eggs. Due to the highly oxidative nature of PUFA, stability of this fat is essential. The implication of hepatic lipid accumulation which was observed in hens fed on fish oils should be explored. Nutritional manipulations, such as supplementation with iodine, inhibitors of cholesterol biosynthesis, garlic products, amino acids and high fibre ingredients, have met a limited success in lowering egg cholesterol.

Nutritional and Tissue Specificity of IGF-I and IGFBP-2 Gene Expression in Growing Chickens - A Review -

  • Kita, K.;Nagao, K.;Okumura, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.5
    • /
    • pp.747-754
    • /
    • 2005
  • Nutritional regulation of gene expression associated with growth and feeding behavior in avian species can become an important technique to improve poultry production according to the supply of nutrients in the diet. Insulin-like growth factor-I (IGF-I) found in chickens has been characterized to be a 70 amino acid polypeptide and plays an important role in growth and metabolism. Although it is been well known that IGF-I is highly associated with embryonic development and post-hatching growth, changes in the distribution of IGF-I gene expression throughout early- to late-embryogenesis have not been studied so far. We revealed that the developmental pattern of IGF-I gene expression during embryogenesis differed among various tissues. No bands of IGF-I mRNA were detected in embryonic liver at 7 days of incubation, and thereafter the amount of hepatic IGF-I mRNA was increased from 14 to 20 days of incubation. In eyes, a peak in IGF-I mRNA levels occurred at mid-embryogenesis, but by contrast, IGF-I mRNA was barely detectable in the heart throughout all incubation periods. In the muscle, no significant difference in IGF-I gene expression was observed during different stages of embryogenesis. After hatching, hepatic IGF-I gene expression as well as plasma IGF-I concentration increases rapidly with age, reaches a peak before sexual maturity, and then declines. The IGF-I gene expression is very sensitive to changes in nutritional conditions. Food-restriction and fasting decreased hepatic IGF-I gene expression and refeeding restored IGF-I gene expression to the level of fed chickens. Dietary protein is also a very strong factor in changing hepatic IGF-I gene expression. Refeeding with dietary protein alone successfully restored hepatic IGF-I gene expression of fasted chickens to the level of fed controls. In most circumstances, IGF-I makes a complex with specific high-affinity IGF-binding proteins (IGFBPs). So far, four different IGFBPs have been identified in avian species and the major IGFBP in chicken plasma has been reported to be IGFBP-2. We studied the relationship between nutritional status and IGFBP-2 gene expression in various tissues of young chickens. In the liver of fed chickens, almost no IGFBP-2 mRNA was detected. However, fasting markedly increased hepatic IGFBP-2 gene expression, and the level was reduced after refeeding. In the gizzard of well-fed young chickens, IGFBP-2 gene expression was detected and fasting significantly elevated gizzard IGFBP-2 mRNA levels to about double that of fed controls. After refeeding, gizzard IGFBP-2 gene expression decreased similar to hepatic IGFBP-2 gene expression. In the brain, IGFBP-2 mRNA was observed in fed chickens and had significantly decreased by fasting. In the kidney, IGFBP-2 gene expression was observed but not influenced by fasting and refeeding. Recently, we have demonstrated in vivo that gizzard and hepatic IGFBP-2 gene expression in fasted chickens was rapidly reduced by intravenous administration of insulin, as indicated that in young chickens the reduction in gizzard and hepatic IGFBP-2 gene expression in vivo stimulated by malnutrition may be, in part, regulated by means of the increase in plasma insulin concentration via an insulin-response element. The influence of dietary protein source (isolated soybean protein vs. casein) and the supplementation of essential amino acids on gizzard IGFBP-2 gene expression was examined. In both soybean protein and casein diet groups, the deficiency of essential amino acids stimulated chickens to increase gizzard IGFBP-2 gene expression. Although amino acid supplementation of a soybean protein diet significantly decreased gizzard IGFBP-2 mRNA levels, a similar reduction was not observed in chickens fed a casein diet supplemented with amino acids. This overview of nutritional regulation of IGF-I and IGFBP-2 gene expression in young chickens would serve for the establishment of the supply of nutrients to diets to improve poultry production.

Studies on the N-compounds during Chung-Kook-Jang Meju Fermentation (1) -Changes of Soybean Protein during Chung-Kook-Jang Meju Fermentation- (청국장(淸國醬) 메주 발효과정중(醱酵過程中)의 질소화합물(窒素化合物)의 소장(消長)에 관(關)한 연구(硏究)(I)-대두단백질(大豆蛋白質)의 소장(消長)에 관(關)하여-)

  • Park, Ke-In
    • Applied Biological Chemistry
    • /
    • v.15 no.2
    • /
    • pp.93-109
    • /
    • 1972
  • Three lots of Chung-Kook-Jang were prepared by the use of 2 strains of Bacillus subtilis and Bacillus natto. For four samples taken from each lot in 12 hrs interval changes of nitrogenous compounds, insoluble protein, water soluble protein, peptides, free amino acids, amino and ammonia nitrogens during Chung-Kook-Jang fermentation, were studied together with the changes of moisture, pH, proteolytic enzyme activity. In addition the average peptide length of the peptides of a Bacillus subtilis lot was determined by the method of molecular sieving using ion exchange resin. The results were as follows: 1. The contents of moisture and total-nitrogen changed little in all samples throughout the fermentation as it would be expected. 2. In all three experimental lots the pH became higher gradually from the initial value of 6.65 to the final $7.5{\sim}7.85$ during the fermentation. Proteolytic enzyme activities, in accordance with this pH change, steadily increased up to $48{\sim}60$ hrs. of fermentation and then slightly decreased, probably affected by the high pH. The most strong proteolytic activity was observed in the experimental Chung-Kook-Jang fermentation lot using the Bacillus subtilis K-27 isolated by the author. 3. The contents of insoluble protein nitrogen in soybeans increased markedly (5%) by the cooking, after steeping 12 hrs in water. During the Chung-Kook-Jang fermentation, however, it decreased from 1/2 to 1/10 of that of the cooked soybeans. 4. The contents of water soluble protein nitrogen (5%) whereas, greatly decreased to the value of 1.0% by the cooking; but little changed further during the fermentation, 5. The total contents (0.25%) of peptides, amino, and ammonia-nitrogens, PAA-N., increased almost double by the cooking and steadily became higher as the fermentation proceeded, reaching finally up to$4{\sim}7%$ in 72 hrs fermentation. 6. The amounts of free amino acids of soybean generally decreased during the processing of cooking, even some of them like glutamic acid were destroyed completely, However in the subsequent Chung-Kook-Jang fermentation for 72 hrs., they showed from several to a few hundreds folds increases depending upon the kinds of amino acids. Valine which was contained in HCl-hydrolyzed steeped or cooked soybeans in amounts $220{\sim}267mg%$ was not detected at all as the free amino acid in all fermented samples. 7. Average peptide length (APL) of all fractions, eluted and fractionated by using the Dowex-50 ion exchange resin column, and fraction collector showed the highest value for the cooked soybean and then decreased as the fermentation proceeded. The APL value of effluent showed the highest in 12 hrs fermented sample, The value decreased thereafter by fermentation.

  • PDF

THE STUDY OF EGF EXPRESSION BETWEEN HUMAN PLEOMORPHIC ADENOMA AND ADENOID CYSTIC CARCINOMA (다형성 선종과 선양낭성 암종에서 상피성장인자 발현에 관한 연구)

  • Park, Seung-Gu;Han, Se-Jin;Kim, Chul-Hwan;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.3
    • /
    • pp.245-249
    • /
    • 2008
  • Epidermal growth factor is a single-chain polypeptide consisting of 53 amino acids and has a potent mitogenic activity that stimulates proliferation of various normal and neoplastic cells through the interaction with its specific receptor(epidermal growth factor receptor, EGFR). Pleomorphic adenoma is the most common salivary benign tumor and histologically, it contains the epithelial cell, the myo-epithelial cell and mesenchymal ingredient, which is various aspect. Adenoid cystic carcinoma is an infiltrative malignant salivary gland tumor with three different histological patterns: cribriform, tubular or solid. The tumor cell structure composed of modified myoepithelial cell, and basaloid cell. In this study, we used an immunohistochemical technique to investigate the expression of EGF in 6 specimens of adenoid cystic carcinoma and 10 specimens of pleomorphic adenoma taken from patients treated at Dept. of Oral and Maxillofacial Surgery, Dankook University. The results were as follows. 1. In pleomorphic adenoma, ductal structure and scattered spindle cells in hyalinized stroma, disclosing myxoid stroma and hyalin, cartilage formation were observed. Immunohistologically, weak EGF expression in ductal structure and negative in stromal area were observed. 2. Cribriform type of adenoid cystic carcinoma showed numerous pseudocyst surrounded by dark small neoplastic cells in the back-ground of fibrous connective tissue and moderate EGF expression of dark cells adjacent to pseudo lumen in cribriform pattern, while weak expression in other most cells. 3. Tubular type of adenoid cystic carcinoma showed numerous ductal pattern surrounded by two layered neoplastic cells in the back-ground of fibrous connective tissue and strong EGF expression in luminal cells of ductal structure, while weak expression in outer cells. From the results obtained, we suggest that EGF is mainly biosynthesized in cells forming duct like structures of tubulo-ductal type or cribriform adenoid cystic carcinoma and it may play a role, as a cell mitogen in adenoid cystic carcinoma growth.

Antioxidant and Tyrosinase Inhibitory Activities of Dicaffeoylquinic Acid Derivatives Isolated from Gnaphalium Affine D. DON (떡쑥 추출물로부터 분리된 Dicaffeoylquinic Acid 유도체들의 항산화 및 타이로시네이즈 저해 활성)

  • Im, Na Ri;Kim, Hae Soo;Ha, Ji Hoon;Noh, Geun Young;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.470-476
    • /
    • 2015
  • In this study, three dicaffeoylquinic acids (DCQAs) isolated from Gnaphalium affine D. DON. extracts were structurally identified and evaluated for their antioxidant activities, cellular protective effects, and tyrosinase inhibitory activities. The ethyl acetate fraction of G. affine was chromatographed, which yielded 3 DCQA derivatives of 1-3 : 3,5-dicaffoylquinic acid (3,5-DCQA, 1), 4,5-dicaffeoylquinic acid (4,5-DCQA, 2), 1,5-dicaffoylquinic acid (1,5-DCQA, 3). The structure of each compounds was determined using $^1H$ NMR and MS analyses. Compounds of 1-3 showed strong free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activities ($FSC_{50}=3.70$, 5.80, and $5.50{\mu}M$, respectively) compared to those of a commonly used lipophilic antioxidant, (+)-${\alpha}$-tocopherol ($21.90{\mu}M$). Cellular protective effects of 1-3 compounds on the $^1O_2$ sensitized photohemolysis of human erythrocytes were similar to (+)-${\alpha}$-tocopherol. 1-3 compounds also exhibited higher tyrosinase inhibitory effects ($IC_{50}=0.15$, 0.16, and 0.13 mM) compared to arbutin (0.33 mM), known as a skin-whitening agent. These results indicate that three DCQA derivatives may be applied as an antioxidant and a skin whitening agent in food or cosmetic industries.

Esterification of High Concentration Free Fatty Acid in Rice Bran Oil (미강유 중 고농도 자유지방산의 에스테르화)

  • Shin, Yong-Seop
    • Journal of Environmental Science International
    • /
    • v.17 no.2
    • /
    • pp.211-224
    • /
    • 2008
  • Characteristics of the esterification reaction between free fatty acid in rice bran oil and methanol was investigated in the presence of catalysts, such as PTS(p-toluene sulfonic acid), Amberlyst 15 dry and SCX(silica gel based strong cation exchange resin). While reaction temperature was kept constant at $65^{\circ}C$, initial feed content of free fatty acid was varied from 100% to 1% by addition of pure free fatty acid which was previously made from rice bran oil. Also, the effect of mole ratio of methanol to fatty acid on the final conversion was examined. When esterification of pure free fatty acid was catalyzed by several acids, final conversions were increased in order of Amberlyst 15 dry, SCX and PTS. Using PTS catalyst, initially the reaction proceeded in homogeneous 2nd oder reaction mechanism. However, phase of reaction mixture changed from homogeneous to heterogeneous along the reaction time and then reaction rate was retarded by mass transfer resistance of methanol. Final conversion of free fatty acid in reaction mixture was depended on initial feed content of free fatty acid, and had maximum value at 30% of initial feed free fatty acid content for all kinds of catalysts used. And the final conversion was increased with mole ratio of methanol by the improvement of reaction rate. When initial feed free fatty acid content below 10% and the reaction was catalyzed by PTS, concentration of free fatty acid in reaction mixture was increased in the middle of reaction time by hydrolysis of triglyceride in reaction mixture. Also, if silica gel was added into the reaction mixture which had initial feed free fatty acid content below 50%, final conversion was increased by the adsorption of moisture produced. The SCX catalyst made the esterification reaction of free fatty acid to progress like in case of PTS catalyst. However, when initial feed free fatty acid content below 10%, concentration of free fatty acid in. reaction mixture was decreased monotonically and not increased in the middle of reaction time on the contrary to the case of PTS. Thus, SCX catalyst accomplished more high value of final conversion than PTS catalyst for the initial feed fatty acid content range from 50% to 5% In case of initial feed free fatty acid content of 1% and mole ratio of methanol was 2, concentration of free fatty acid in reaction mixture increased over the initial feed free fatty acid content for all kind of catalysts used. Although SCX catalyst was added into reaction mixture which had 1% of initial feed fatty acid content, final conversion was hardly raised by mole ratio of methanol.

Chemical Compounds and Biological Activity of Phellinus baumii (상황버섯의 화학성분 및 생리활성 효과)

  • Shon, Mi-Yae;Seo, Kwon-Il;Choi, Sun-Young;Sung, Nak-Ju;Lee, Sang-Won;Park, Seok-Kyu
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.5
    • /
    • pp.524-529
    • /
    • 2006
  • Chemical compounds, hydrogen peroxide and nitrite-scavenging activities of Phellinus baumii (PB) were investigated to expand the utilization of PB as functional food material. Total mineral contents of PB was 534.3 mg% and potassium was the highest content being 224 mg%. Total and reducing sugars were 56.2% and 9.8%, respectively The contents of free amino acids (FAAs) were in a range of $16.9{\sim}765.5mg%$ with the major FAAs of phenylalanine, aspartic acid, glutamic acid, leucine, serine and valine. The contents of total phenolic compounds in methanol and hot water extracts of PB were 33.3 and 20.7 mg/100 mL, respectively and were higher than those of other solvent extracts. Hydrogen peroxide-scavenging activity (80%) of methanol extract at $10{\mu}g/mL$ for 30 min was similar to tocopherol (83.1%) as control. Nitrite-scavenging activity of extracts of methanol and hot water at 500 mg/mL and pH 1.2 were 57.3% and 51.8%, respectively and then their effects were increased by lowering pH. The present results showed that the methanol and water extracts of Phellinus baumii exhibited strong hydrogen peroxide and nitrite-scavenging activities.

Effects of Dietary Arachidonic Acid (20:4n-6) Levels on Growth Performance and Fatty Acid Composition of Juvenile Eel, Anguilla japonica

  • Bae, Jun-Young;Kim, Dae-Jung;Yoo, Kwang-Yeol;Kim, Sun-Gyu;Lee, Jeong-Yeol;Bai, Sungchul C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.4
    • /
    • pp.508-514
    • /
    • 2010
  • This study was conducted to evaluate the effects of dietary arachidonic acid (AA, 20:4n-6) levels on growth performance and body composition in juvenile eel, Anguilla japonica. Six semi-purified experimental diets were formulated to be isonitrogenous and iso-caloric containing 55.0% crude protein and 15% crude lipid (18.3 kJ of available energy $g^{-1}$). Six different levels of AA were added to the basal diet, with 0, 0.2, 0.4, 0.6, 0.8 or 1.2% on a dry matter (DM) basis, respectively ($AA_{0.07},\;AA_{0.22},\;AA_{0.43},\;AA_{0.57},\;AA_{0.78}\;or\;AA_{1.23}$). After a conditioning period, fish initially averaging 27${\pm}$0.5 g (mean${\pm}$SD) were randomly distributed into each aquarium as triplicate groups of 20 fish each. One of six experimental diets was fed on a DM basis to fish in three randomly selected aquaria at a rate of 2-3% of total body weight twice a day. At the end of the 12-week feeding trial, weight gain (WG) and feed efficiency (FE) of fish fed $AA_{0.78}$ and $AA_{1.23}$ diets were significantly higher than of fish fed $AA_{0.07},\;AA_{0.22},\;AA_{0.43}$ diets (p<0.05). Specific growth rate (SGR) of fish fed the $AA_{0.78}$ diet was significantly higher than of fish fed $AA_{0.07},\;AA_{0.22},\;AA_{0.43}$ diets (p<0.05). However, there were no significant differences in WG, SGR and FE among fish fed $AA_{0.57},\;AA_{0.78}\;or\;AA_{1.23}$ diets (p>0.05). Whole body AA deposition of fish fed the $AA_{1.23}$ diet was significantly higher than for the other diets (p<0.05). Broken-line model analysis on the basis of WG and SGR indicated that the dietary AA requirement could be greater than 0.69% but less than 0.71% of the diet in juvenile eel. The growth-promoting activity of AA observed in the present study provides strong support for the contention that dietary AA is essential for juvenile eel.