• 제목/요약/키워드: Strong Swirl Flame

검색결과 29건 처리시간 0.027초

미분탄 스월버너에서 PKS와 석탄 혼소가 화염 구조에 미치는 영향 (Effect of Co-firing PKS and Coal on Flame Structure in a Pulverized Coal Swirl Burner)

  • 신민호;성연모;최민성;이광수;최경민;김덕줄
    • 한국연소학회지
    • /
    • 제21권4호
    • /
    • pp.30-38
    • /
    • 2016
  • Flame structure of co-firing coal and palm kernel shell (PKS) was investigated in a pulverized coal swirl burner by particle image velocimetry (PIV). The pulverized coal swirl flame is operated with a PKS blending ratio of 10%, 20%, and 30%. For all operating conditions, flame structures such as internal recirculation zone (IRZ), outer recirculation zone (ORZ), and exhaust tube vortex (ETV) were observed. In the center of flame, the strong velocity gradient is occurred at the stagnation point where the volatile gas combustion actively takes place and the acceleration is increased with higher PKS blending ratio. OH radical shows the burned gas region at the stagnation point and shear layer between IRZ and ORZ. In addition, OH radical intensity increases for a co-firing condition because of high volatile matter from PKS. Because the volatile gas combustion takes place at lower temperature, co-firing condition (more than 20%) leads to oxygen deficiency and reduces the combustibility of coal particle near the burner. Therefore, increasing PKS blending ratio leads to higher OH radical intensity and lower temperature.

스퍼드형 가스버너의 연소특성에 관한 실험적 연구 (An Experiment Study on Combustion Characteristics of the Spud Type Gas Burner)

  • 양관모;천무환;선칠영;장인갑;장길홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.668-673
    • /
    • 2000
  • Spud angle( ${\alpha}$ ) and fuel injection angle ( ${\beta}$ ) have strong influence on spud type gas burner combustion. A wide range of flame stability is shown at ${\alpha}=60^{\circ}$, but at ${\alpha}=30^{\circ}$ is narrow. Optimum condition of flame stability swirl angle( ${\gamma}$ ) is $40^{\circ}$. At condition of ${\alpha}=30^{\circ}$ flame shape is relatively narrow and long, on the other hand, at ${\alpha}=60^{\circ}$ flame is wide and short. Regardless of spud angle, maximum flame temperature shows in the range of Z=200mm and R=0mm. Flame temperature, on the whole, is high at ${\alpha}=45^{\circ}$. At ${\alpha}=45^{\circ}$, NOx emission is higher than other conditions that may be concerned with flame temperature. At ${\beta}=60^{\circ}$ and ${\gamma}=40^{\circ}$, NOx emission is reduced due to fuel injection angle.

  • PDF

대형 액상분사식 LPG 엔진의 희박연소특성에 관한 연구 (Lean Burn Characteristics in a Heavy Duty Liquid Phase LPG Injection SI Engine)

  • 오승묵;김창업;강건용;우영민;배충식
    • 한국자동차공학회논문집
    • /
    • 제12권4호
    • /
    • pp.1-11
    • /
    • 2004
  • Combustion and fuel distribution characteristics of heavy duty engine with the liquid phase LPG injection(LPLI) were studied in a single cylinder engine, Swirl ratio were varied between 1.2, 2.3, and 3.4 following Ricardo swirl number(Rs) definition, Rs=2.3 showed the best results with lower cycle-by-cycle variation and shorter burning duration in the lean region while strong swirl(Rs=3.4) made these worse for combustion enhancement. Excessive swirl resulted in reverse effects due to high heat transfer and initial flame kernel quenching. Fuel injection timings were categorized with open valve injection(OVI) and closed valve injection(CVI). Open valve injection showed shorter combustion duration and extended lean limit. The formation of rich mixture in the spark plug vicinity was achieved by open valve injection. With higher swirl strength(Rs=3.4) and open valve injection, the cloud of fuel followed the flow direction and the radial air/fuel mixing was limited by strong swirl flow. It was expected that axial stratification was maintained with open-valve injection if the radial component of the swirling motion was stronger than the axial components. The axial fuel stratification and concentration were sensitive to fuel injection timing in case of Rs=3.4 while those were relatively independent of the injection timing in case of Rs=2.3.

가습 공기의 LNG 화염 Thermal NOx 저감의 수치 해석적 연구 (Numerical Study on the Thermal NOx Reduction by Addition of Moisture in LNG Flame)

  • 신미수;박미선;장동순
    • 대한환경공학회지
    • /
    • 제36권12호
    • /
    • pp.837-842
    • /
    • 2014
  • LNG 난류 화염에서 수증기나 물을 전기분해한 기체를 투입할 경우 발생하는 NO 생성을 예측하기 위하여 컴퓨터 프로그램을 개발하였다. 본 연구는 그 첫 번째로서 NO 생성에 대한 수증기 영향을 다룬 연구이다. 개발한 이 프로그램을 한국에너지기술연구원에서 실험 연소로를 대상으로 적용하였다. 수증기 양에 따른 LNG 화염에서 NO 생성 효과를 검토하기 위하여 투입된 전체 공기량에 수분양을 0~10%까지 2% 간격으로 주입하였다. 계산 결과 강한 선회 유동의 결과로 나타나는 전형적인 유동분리에 따른 화염분리와 함께 NO 농도가 분리되는 양상이 나타났다. 수분양이 증가하면서 출구에서의 연소가스의 온도와 NO의 농도는 $973^{\circ}C$에서 $852^{\circ}C$로 NO의 농도는 139 ppm에서 71 ppm으로 일관성 있게 감소하였다. 그리고 연소로 복사 현상은 본 연구에서 고려한 영역에서 선회강도보다도 NO 생성에 큰 영향을 나타내었다. 그러나 본 연구에서 고려한 강한 선회 효과는 NO 농도가 연소로 전단에 이어 출구 근처에서 다시 높아지는 분리 현상을 나타내었다.

선회연소기를 이용한 산소부화연소화염의 연소 특성 연구 (Characteristics of Oxygen-Enhanced Flame in Swirl Burner)

  • 이윤원;안국영;김한석;이창언
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.149-154
    • /
    • 2001
  • The emission characteristics, flame stability, the composition of the flame zone and temperature profile were studied experimentally. The compositions of oxydant were varied by substituting $N_2$ with $CO_2$ at the constant $O_2$ concentration. Results showed that flame became unstable due to the high heat capacity, low transport rate and strong radiation effect of $CO_2$ in comparison with those of $N_2$. The reaction zone was cooled, broadened, as the conversion ratio of $CO_2$ to $N_2$ was increased. Temperature has a large effect on the NOx emission. The concentration of NOx in flue gas decreased due to the decreased temperature of reaction zone. It was also shown that the reaction was delayed by the cooling effect. As the conversion ratio of $CO_2$ to $N_2$ was increased, the emission of CO and the higher temperature zone increased due to the decrease of reaction rate by the cooling effect.

  • PDF

PLIF 및 자발광 계측을 이용한 이중선회 가스터빈 연소기에서 연소불안정 모드 연구 (A Study of Combustion Instability Mode in Dual Swirl Gas Turbine Combustor by PLIF and Chemiluminescence Measurement)

  • 최인찬;이기만
    • 한국연소학회지
    • /
    • 제19권1호
    • /
    • pp.29-38
    • /
    • 2014
  • This paper described an experimental investigations of combustion instability mode in a lean premixed dual swirl combustor for micro-gasturbine system. When such the instability occurs, a strong coupling between pressure oscillations and unsteady heat release excites a self-sustained acoustic wave which results in a loud, annoyed sound and may also lead a structural damage to the combustion chamber. The detailed period of flame behavior and heat release in combustion instability mode have been examined with high speed OH and CH-PLIF system and $CH^*$ chemiluminescence measurement, flame tomography with operated at 10 kHz and 6 kHz each. Experiment results suggest that unstable flame behavior has a specific frequency with 200 Hz and this frequency is accords with about 1/2 sub-harmonic of combustor resonance frequency, not fundamental frequency. This is very interesting phenomenon that have not reported yet from other previous works. Therefore, when a thermo-acoustic instability with Rayleigh criterion occurs, the fact that the period of heat release and flame behavior are different each other was proposed for the first time through this work.

Three-Dimensional Characterization of Strong Recirculating Flow by Stereoscopic PIV

  • Ikeda, Yuji;Palero, Virginia;Sato, Kei;Nakajima, Tsuyoshi
    • 한국연소학회지
    • /
    • 제7권1호
    • /
    • pp.37-43
    • /
    • 2002
  • Spray characteristics in the swirling flow were investigated by Stereoscopic PIV. Spatial spray structures were measured by PIV as well as PDA in order to understand stable flame stabilization. The feasibility study of Stereoscopic PIV in spray flame was also demonstrated. The size and location of recirculation flow were measured. The stereoscopic PIV could provide 3-D flow fluctuation that cannot be measured by convectional measurement systems.

  • PDF

기류분사 노즐에 의한 선회 분무 화염의 구조에 관한 실험적 연구 (An experimental study on swirling spray flame structure by air-blast nozzle)

  • 오상헌;백민수;김동일
    • 대한기계학회논문집B
    • /
    • 제21권4호
    • /
    • pp.473-485
    • /
    • 1997
  • Detailed experimental study has been made of air blast kerosene spray flames with and without swirl in combustion air flow. Phase-Doppler detect technique is used to measure Sauter mean diameter, axial component mean and rms velocity, size-velocity correlation, and number density. These measurements are obtained for both nonreacting and reacting cases under several stable flame conditions. The results show that the introduction of swirl to the combustion air modifies the spatial distribution of droplet size, velocity, and number density, and thus alters the flame structure. However, due to the weak swirl intensity, the overall structure of swirling flames are essentially same as that of nonswirling flames. Physical model of structure of air blast atomized spray flames is projected to show that spray flames are composed of three distinct regions: the two-phase mixture region, the main reaction and the intermittent combustion region. Near the atomizer, two phase mixture of droplet and air is formed in the core region. This dense spray region is characterized by high droplet number density and the strong convective effect. There follows the main combustion region where the main flame penetrates within the spray boundary. Main reaction region of these flames are governed by internal group combustion mode. Finally there exists the intermittent combustion region where local group burning or isolated droplet burning occurs.

CH-OH PLIF와 Stereoscopic PIV동시계측에 의한 난류예혼합화염의 관찰 (Simultaneous Measurements of CH-OH PLIF and Stereoscopic PIV in Turbulent Premixed Flames)

  • 최경민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.91-96
    • /
    • 2004
  • Simultaneous CH and OH planar laser induced fluorescence(PLIF) and stereoscopic particle image velocimetry (PIV) measurements have been developed to investigate the local flame structure of turbulent premixed flames. The developed simultaneous two radical concentrations and three component velocity measurements on a two-dimensional plane was applied for relatively high Reynolds number turbulent premixed flames in a swirl stabilized combustor. All measurements were conducted for methane-air premixed flames in the corrugated flamelets regime. Strong three-dimensional fluctuation implies that misunderstanding of the flame/turbulent interactions would be caused by the analysis of two-component velocity distribution in a cross section. Furthermore, comparisons of CH-OH PLIF and three-component velocity field show that the burned gases not always have high-speed velocity in relatively high Reynolds number turbulent premixed flame. The Reynolds number dependence of the flame front was clearly captured by the simultaneous CH-OH PLIF and stereoscopic PIV measurements.

  • PDF

CH-OH PLIF와 Stereoscopic PIV계측법을 이용한 난류예혼합화염의 관찰 (Simultaneous Measurement of CH-OH PLIF and Stereoscopic PIV in Turbulent Premixed Flames)

  • 최경민
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 추계학술대회 논문집
    • /
    • pp.102-103
    • /
    • 2004
  • Simultaneous CH and OH planar laser induced fluorescence(PLIF) and stereoscopic particle image velocimetry(PIV) measurements have been developed to investigate the local flame structure of turbulent premixed flames. The developed simultaneous two radical concentrations and three component velocity measurements on a two-dimensional plane was applied for relatively high Renolds number turbulent premixed flames in a swirl stabilized combustor. All measurements were conducted for methane-air premixed flames in the corrugated flamelets regime. Strong three-dimensional fluctuation implies that misunderstanding of the flame/turbulent interactions would be caused by the analysis of two-component velocity distribution in a cross section. Furthermore, comparisons of CH-OH PLIF and three-component velocity field show that the burned gases not always have high-speed velocity in relatively high Renolds number turbulent premixed flame.

  • PDF