• Title/Summary/Keyword: Stromal Cell Derived Factor-1 Alpha

Search Result 12, Processing Time 0.018 seconds

Effect of Treponema lecithinolyticum lipopolysaccharide on matrix metalloproteinase-9 expression (Treponema lecithinolyticum lipopolysaccharide에 의한 matrix metalloproteinase-9의 발현)

  • Nam, Jeong-Ah;Moon, Sun-Young;Lee, Jin-Wook;Cha, Jeong-Heon;Choi, Bong-Kyu;Yoo, Yun-Jung
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.3
    • /
    • pp.675-685
    • /
    • 2005
  • Bone resorption involves sequential stages of osteoclast precursor migration and differentiation of osteoclast precursors into multinucleated osteoclasts. Stromal cell derived factor (SDF)-1 is a chemotactic factor for osteoclast precursor migration. Matrix metalloproteinase (MMP)-9 is involved in migration of osteoclast precursors and activation of $interleukin(IL)-1{\beta}$. Alveolar bone destruction is a characteristic feature of periodontal disease. Treponema lecithinolyticum is a oral spirochete isolated from the periodontal lesions. The effect of lipopolysaccharide(LPS) from T. lecithinolyticum on expression of SDF-1 and MMP-9 was examined in cocultures of bone marrow cells and osteblasts derived from mouse calvariae. T. lecithinolyticum LPS increased expression of MMP-9 in the coculture. Polymyxin B, an inhibitor of LPS, abolished the increase of MMP-9 mRNA expression by LPS. LPS did not increase the expression of SDF-1, $IL-1{\beta}$ and tumor necrosis $factor(TNF)-{\alpha}$ mRNA in cocultures. Prostaglandin $E_2(PGE_2)$ up-regulated the expression of MMP-9 and NS398, an inhibitor of $PGE_2$ synthesis, down-regulated the induction of MMP-9 expression by T. lecitbinolyticm LPS. These results suggest that T. lecitbinolyticm LPS increases MMP-9 expression in bone cells via $PGE_2$ and that the induction of MMP-9 expression by T. lecitbinolyticm LPS is involved in alveolar bone destruction of periodontitis patients by the increase of osteoclast precursor migration and the activation of bone resorption-inducing cytokine.

Inhibition of mRANKL Expression by Doxycycline in Rat Periodontal Ligament Cells (백서 치주인대세포에서 Doxycycline에 의한 mRANKL 발현 억제)

  • Cho, Kwan-Pyo;Cui, De-Zhe;Kim, Young-Joon
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.335-344
    • /
    • 2006
  • Osteoblast or bone marrow stromal cell-derived RANKL is the major effector molecule essential for osteoclastogenesis. Previous studies have shown that tetracyclines have beneficial therapeutic effects in the prevention and treatment of inflammatory bone disease including periodontal disease. Periodontal ligament cells are thought not only to play an important role in the progression of periodontal disease, but to play an important role in alveolar bone remodeling. Previous studies indicated that receptor activation of nuclear factor $\kappa\;B$ ligand (RANKL) and osteoprotegerin (OPG) are expressed in periodontal ligament cells by pro-inflammatory cytokine, such as $IL-1{\beta}$ and $TNF-{\alpha}$. This study was designed to investigate the inhibitory effect of doxycycline on RANKL and OPG mRNA in rat periodontal ligament cells induced by $IL-1{\beta}$ (1 ng/ml). The results are as follows; 1. MTT assay showed that doxycycline at the concentration of $1-50\;{\mu}g/m{\ell}$ didn't result in statistically significant cell death at day 1 and 3. 2. RANKL mRNA expression was increased to 2.6 folds by $IL-1{\beta}$. When cells were treated with doxycycline ($50{\mu}g/m{\ell}$), $IL-1{\beta}$ -induced mRANKL expression was reduced by 33%. In contrast to RANKL, OPG mRNA expression was not inhibited by pre-treatment with doxycycline. These results suggest that doxycycline decrease the expression of mRANKL resulting in regulation of osteoclastogenesisp in rat periodontal ligament cells.