• Title/Summary/Keyword: Stroke Sensor

Search Result 130, Processing Time 0.131 seconds

베게에 삽입된 PVDF센서를 이용한 무호흡증 측정 (Measurement of Apnea Using a Polyvinylidene Fluoride Sensor Inserted in the Pillow)

  • 금동위;김정도
    • 센서학회지
    • /
    • 제27권6호
    • /
    • pp.407-413
    • /
    • 2018
  • Most sleep apnea patients exhibit severe snoring, and long-lasting sleep apnea may cause insomnia, hypertension, cardiovascular diseases, stroke, and other diseases. Although polysomnography is the typical sleep diagnostic method to accurately diagnose sleep apnea by measuring a variety of bio-signals that occur during sleep, it is inconvenient as the patient has to sleep with attached electrodes at the hospital for the diagnosis. In this study, a diagnostic pillow is designed to measure respiration, heart rate, and snoring during sleep, using only one polyvinylidene fluoride (PVDF) sensor. A PVDF sensor with piezoelectric properties was inserted into a specially made instrument to extract accurate signals regardless of the posture during sleep. Wavelet analysis was used to identify the extractability and frequency domain signals of respiration, heart rate, and snoring from the signals generated by the PVDF sensor. In particular, to separate the respiratory signal in the 0.2~0.5 Hz frequency region, wavelet analysis was performed after removing 1~2 Hz frequency components. In addition, signals for respiration, heart rate, and snoring were separated from the PVDF sensor signal through a Butterworth filter and median filter based on the information obtained from the wavelet analysis. Moreover, the possibility of measuring sleep apnea from these separated signals was confirmed. To verify the usefulness of this study, data obtained during sleeping was used.

Body Composition Variations in the Paretic and Nonparetic Regions of Patients with Strokes Caused by Cerebral Hemorrhage or Cerebral Infarction

  • Yoo, Chan-Uk;Kim, Jae-Hyung;Kim, Gun-Ho;Hwang, Young-Jun;Jeon, Gye-Rok;Baik, Seong-Wan
    • 센서학회지
    • /
    • 제26권5호
    • /
    • pp.314-323
    • /
    • 2017
  • Indicators to quantitatively evaluate the body function may help to optimize the effectiveness of rehabilitation therapy for stroke patients. In this study, we analyzed the body composition in the paretic and nonparetic regions of stroke patients with hemiplegia caused by cerebral hemorrhage (7 cases) and cerebral infarction (13 cases) using multifrequency bioelectrical impedance. Specifically, we considered fat mass (FM), fat-free mass (FFM), FFMI index (FFMI), FM/FFM relation, body cell mass (BCM), basal metabolic rate (BMR), and BMR/FFM relation to evaluate the bodily function in the paretic and nonparetic regions. These values showed considerable differences according to grades determined by the stroke causes and the paralysis status. In the paretic regions, the FFM, FFMI, BCM, and BMR were low and the FM was high. In contrast, the nonparetic regions showed a high FFM and low FM. Furthermore, the paretic and nonparetic regions of all patients suitably fit a linear relation (slope: 22.17 kcal/day/kg) between BMR and FFM. Therefore, bio-electrical impedance measurements can be very useful to quantitatively assess paretic and nonparetic regions in hemiplegic stroke patients.

SVM 이용한 다중 생체신호기반 온열질환 감지 스마트 안전모 개발 (Smart Helmet for Vital Sign-Based Heatstroke Detection Using Support Vector Machine)

  • 장재민;이강호;주수빈;권오원;이학;이동규
    • 센서학회지
    • /
    • 제31권6호
    • /
    • pp.433-440
    • /
    • 2022
  • Recently, owing to global warming, average summer temperatures are increasing and the number of hot days is increasing is increasing, which leads to an increase in heat stroke. In particular, outdoor workers directly exposed to the heat are at higher risk of heat stroke; therefore, preventing heat-related illnesses and managing safety have become important. Although various wearable devices have been developed to prevent heat stroke for outdoor workers, applying various sensors to the safety helmets that workers must wear is an excellent alternative. In this study, we developed a smart helmet that measures various vital signs of the wearer such as body temperature, heart rate, and sweat rate; external environmental signals such as temperature and humidity; and movement signals of the wearer such as roll and pitch angles. The smart helmet can acquire the various data by connecting with a smartphone application. Environmental data can check the status of heat wave advisory, and the individual vital signs can monitor the health of workers. In addition, we developed an algorithm that classifies the risk of heat-related illness as normal and abnormal by inputting a set of vital signs of the wearer using a support vector machine technique, which is a machine learning technique that allows for rapid binary classification with high reliability. Furthermore, the classified results suggest that the safety manager can supervise the prevention of heat stroke by receiving feedback from the control system.

선 자세에서 짐볼 운동이 뇌졸중 환자의 근력, 균형, 보행 및 낙상 효능감에 미치는 효과 (Effects of Gym-ball Exercise in Standing Position on Muscle Strength, Balance, Gait and Fall Efficacy in Stroke Patients)

  • 임윤정;강순희
    • 대한통합의학회지
    • /
    • 제10권1호
    • /
    • pp.49-60
    • /
    • 2022
  • Purpose : The purpose of this study was to identify whether gym-ball exercise in standing position was an effective intervention for improving muscle strength, balance, gait, and fall efficacy in stroke patients. Methods : Twenty-four stroke patients were randomized into three groups: experimental group 1 (n=8), experimental group 2 (n=8), and control group (n=8). Experimental groups 1, 2 and the control group performed the gym-ball exercise in standing position, same exercise without a gym-ball, and general physical therapy for 4 weeks, five times a week in 30-minute sessions. Muscle strength, balance, gait, and fall efficacy were assessed using a handheld dynamometer, the Berg Balance Scale (BBS), the wearable BTS G-WALK® sensor, and the Korean version of the Falls Efficacy Scale (K-FES), before and after training, respectively. Comparisons within and between groups were analyzed using the Wilcoxon signed rank test, Kruskal Wallis H test, and Mann-Whitney U test. Bonferroni correction was performed when significant differences between groups were identified (p<.017, .05/3). Results : Regarding muscle strength, BBS score, cadence and FES-K were significantly improved after intervention in all three groups. The weight bearing rate, gait speed and step length in experimental group 1 and 2 were significantly improved after the intervention. The stride length in experimental group 1 were significantly improved after the intervention. Experimental group 1 had significantly improved BBS score and stride length after intervention than experimental group 2 and control group. Experimental group 1 and 2 improved muscle strength, weight bearing rate, and FES-K score more than the control group. Experimental group 1 showed significant improvement in cadence, gait speed, and step length after the intervention than control group. Conclusion : This study showed that exercise with gym-ball in standing position can be an effective intervention to improve balance and gait in stroke patients than the same exercise without gym-ball.

25.8kV급 N2 절연 지중다회로 개폐기 진단알고리즘 개발 (Development of Diagnosis Algorithm for 25.8kV N2 insulated Pad-mounted Switchgear)

  • 김춘원;장성일;최정환;김광호
    • 산업기술연구
    • /
    • 제34권
    • /
    • pp.67-70
    • /
    • 2014
  • In this paper, we propose a diagnosis algorithm for 25.8kV $N_2$ insulated Pad-mounted Switchgear in oder to improve reliability by preventing of fault in advance. The proposed algorithm can diagnose the problems of Pad-mounted Switchgear such as gas leakage and VI(Vacuum Interrupter) trouble (contact abrasion, coil aging etc.) by using pressure sensor, stroke sensor and coil current sensor.

  • PDF

3축 힘센서를 이용한 구물체 잡기 손가락 힘측정시스템 개발 (Development of finger-force measuring system with three-axis force sensor for measuring a spherical-object grasping force)

  • 김현민;김갑순
    • 센서학회지
    • /
    • 제19권3호
    • /
    • pp.238-245
    • /
    • 2010
  • Stroke patients can't use their hands because of the paralysis of their fingers. Their fingers are recovered by rehabilitating training, and the rehabilitating extent can be judged by grasping a spherical object. At present, the object used in hospital is only a spherical object, and can't measure the force of fingers. Therefore, doctors judge the rehabilitating extent by touching and watching at their fingers. So, the spherical object measuring system which can measure the force of their fingers should be developed. In this paper, the finger-force measuring system with a three-axis force sensor which can measure the spherical-object grasping force is developed. The three-axis force sensor is designed and fabricated, and the force measuring device is designed and manufactured using DSP(digital signal processing). Also, the grasping force test of men is performed using the developed finger-force measuring system, it was confirmed that the average force of men was about 120 N.

곤충 날개를 형상화한 마이크로로봇의 연구 (Study of Microrobot formed the Wing of a Insect)

  • 김종걸;이건영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.424-424
    • /
    • 2000
  • The implementation of a insect-based flying microrobot has been previously proposed as using magnetic force. The flying principle of a butterfly is different from that of a airplane, which obtain lifting force above the wings by a air stream with low pressure. Butterflies obtain lifting force below the wings by flapping. They can fly when drag during the down stroke is greater that during the up stroke. The structure of flying microrobot must satisfy these condition. And that must be manufacture lightly and keep balance for rising to the air sufficiently. Moreover the efficiency of an electromagnet is high and the flux density is sustained uniformly and widely Nevertheless these condition is satisfied, the implementation of a flying microrobot is very difficult as the flying microrobot has to fly without guides or sensor. We propose differently a new model il] comparison with that other paper has suggested. This imitates the form of the Korean shield-shaped kite.

New Inchworm type Actuator with I/Q heterodyne Interferometer Feedback for a Long Stroke Precision Stage

  • Moon Chanwoo;Lee Sungho;Chung J.K
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권2호
    • /
    • pp.34-39
    • /
    • 2005
  • The precision stage is an essential device for optic fiber assembly systems, micro machines and semiconductor equipments. A new piezoelectric inchworm type actuator is proposed to implement an actuator-integrated long-stroke linear stage. An in-and-quadrature phase (I/Q) heterodyne interferometer is developed as a feedback sensor of a servo system, and a synchronized counting method is proposed. The proposed measurement system can measure the accurate position of fast moving object with robustness to external sensing noise from actuator vibration. The developed servo stage will be applied to optic fiber device assembly system.

3축 힘센서를 이용한 두 손가락 힘측정장치 개발 (Development of Force Measuring System using Three-axis Force Sensor for Measuring Two-finger Force)

  • 김현민;윤정원;신희석;김갑순
    • 제어로봇시스템학회논문지
    • /
    • 제16권9호
    • /
    • pp.876-882
    • /
    • 2010
  • Stroke patients can't use their hands because of the paralysis their fingers. Their fingers are recovered by rehabilitating training, and the rehabilitating extent can be judged by measuring the pressing force to be contacted with two fingers (thumb and first finger, thumb and middle finger, thumb and ring finger, thumb and little finger). But, at present, the grasping finger force of two-finger can't be accurately measured, because there is not a proper finger-force measuring system. Therefore, doctors can't correctly judge the rehabilitating extent. So, the finger-force measuring system which can measure the grasping force of two-finger must be developed. In this paper, the finger-force measuring system with a three-axis force sensor which can measure the pressing force was developed. The three-axis force sensor was designed and fabricated, and the force measuring device was designed and manufactured using DSP (Digital Signal Processing). Also, the grasping force test of men was performed using the developed finger-force measuring system, it was confirmed that the grasping forces of men were different according to grasping methods.

6 축 힘/모멘트센서를 이용한 구물체 잡기 손가락 힘측정장치 개발 (Development of Finger-force Measuring System with Six-axis Force/moment Sensor for Measuring a Spherical-object Grasping Force)

  • 김현민;윤정원;신희석;김갑순
    • 한국정밀공학회지
    • /
    • 제27권11호
    • /
    • pp.37-45
    • /
    • 2010
  • Stroke patients can't use their hands because of the paralysis of their fingers. Their fingers are recovered by rehabilitating training, and the rehabilitating extent can be judged by grasping a spherical object. At present, the used object in hospital is only a spherical object, and can't measure the force of fingers. Therefore, doctors judge the rehabilitating extent by touching and watching at their fingers. So, the spherical object measuring system which can measure the force of their fingers should be developed. In this paper, the finger-force measuring system with a six-axis force/moment sensor which can measure the spherical-object grasping force is developed. The six-axis force/moment sensor was designed and fabricated, and the force measuring device was designed and manufactured using DSP (digital signal processing). Also, the grasping force test of men was performed using the developed finger-force measuring system, it was confirmed that the average force of men was about 120N.