• Title/Summary/Keyword: Stroke Sensor

Search Result 130, Processing Time 0.023 seconds

Design of a Three-Axis Force Sensor for Wrist Bending-Exercise Rehabilitation Robot (손목굽힘운동 재활로봇을 위한 3축 힘센서 설계)

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.118-123
    • /
    • 2013
  • Most serious stroke patients have the paralysis of their wrists, and can't use of their hands freely. But their wrists can be recovered by rehabilitation exercise. Recently, professional rehabilitation therapeutists exercise the wrists of stroke patients in hospital. But the wrists of stroke patients have not rehabilitated, because the therapeutists are much less than stroke patients in number. Therefore, the wrist bending-exercise rehabilitation robot that can measure the bending force of the patients' wrists is developed. In this paper, the three-axis force sensor was designed for the wrist bending-exercise rehabilitation robot. As a test results, the interference error of the three-axis force sensor was less than 0.85%. It is thought that the sensor can be used to measure the wrist bending force of the patient.

A Study on the Remote Detection of a Hydraulic Cylinder Stroke Using Optical Fiber Sensors (광파이버센서를 이용한 유압실린더 스트로크의 원격 검출에 관한 연구)

  • 김인환;김종화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.191-198
    • /
    • 2001
  • In order to comprise a basic closed-loop control system for hydraulic systems it is necessary to detect the piston rod stroke of a hydraulic cylinder. There are many conventional type sensors which can detect the displacement of cylinders. However, they cannot reveal the original performance normally or they cannot be applied at all where the operating circumstance of cylinders is beyond specifications of sensors. Especially, for the purpose of detecting the strokes of cylinders mounted on heavy equipments, a special exclusive sensor must be used because the operating circumstances of heavy equipments are so severe that general purpose sensors cannot endure such circumstance as shock and a residual vibration induced by rough works. In this paper, an exclusive method for detecting the piston rod stroke for heavy equipments is suggested, which adopts a remote detecting technique using optical fiber sensors. Several experiments using the prototype are executed for verifying the effectiveness of the suggested method and the possibility of the accurate detection of stroke.

  • PDF

Gait Feature Vectors for Post-stroke Prediction using Wearable Sensor

  • Hong, Seunghee;Kim, Damee;Park, Hongkyu;Seo, Young;Hussain, Iqram;Park, Se Jin
    • Science of Emotion and Sensibility
    • /
    • v.22 no.3
    • /
    • pp.55-64
    • /
    • 2019
  • Stroke is a health problem experienced by many elderly people around the world. Stroke has a devastating effect on quality of life, causing death or disability. Hemiplegia is clearly an early sign of a stroke and can be detected through patterns of body balance and gait. The goal of this study was to determine various feature vectors of foot pressure and gait parameters of patients with stroke through the use of a wearable sensor and to compare the gait parameters with those of healthy elderly people. To monitor the participants at all times, we used a simple measuring device rather than a medical device. We measured gait data of 220 healthy people older than 65 years of age and of 63 elderly patients who had experienced stroke less than 6 months earlier. The center of pressure and the acceleration during standing and gait-related tasks were recorded by a wearable insole sensor worn by the participants. Both the average acceleration and the maximum acceleration were significantly higher in the healthy participants (p < .01) than in the patients with stroke. Thus gait parameters are helpful for determining whether they are patients with stroke or normal elderly people.

The Position Control of Stroke Sensing Cylinder for Automatic Excavation

  • Son, Ku-Young;Kim, Sung-Su;Yang, Soon-Yong;Lee, Byung-Ryong;Ahn, Kyung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.105.3-105
    • /
    • 2002
  • The Field Robot means the machinery applied for outdoor tasks in construction, agriculture, and undersea etc. In this study, to robotize the hydraulic excavator that is mostly used in construction working. we developed an interfacing hardware units of stroke sensing cylinder using magnetic sensor and estimated its performance. It is illustrated by experiment that the proposed control system by stroke sensing cylinder gives good performances in the position control.

  • PDF

A Development of Stroke Sensing Cylinder for Position Control Using Magnetic Sensor (I) (자기센서를 이용한 위치제어용 스트로크 측정 실린더 개발(I))

  • Lee, M.C.;Choi, Y.J.;Lee, M.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.136-144
    • /
    • 1996
  • We developed a part of stroke sensing cylinder for position control of automatic excavator and its measurement system. In this paper, for development of stroke sensing cylinder, we consist of 2-axis control instrument system with Hall sensor. A performance of piston rod with magnetic scales is evaluated by the developed measurement system. Furthermore, the position control for good performance of instrument system is achieved by a sliding mode control which is a new method diminishing the chattering in that control by setting 2-dead band along the swtching line. The unknown parameters for sliding mode control are estimated by the signal compression method.

  • PDF

Development of Putting Grip Sensor System (퍼팅그립 악력 측정시스템의 개발에 관한 연구)

  • Tack, Gye-Rae;Lim, Young-Tae;Yoon, Jeong-Min;Kim, Hyung-Sik;Yi, Jeong-Han
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.113-117
    • /
    • 2005
  • As a preliminary study of finding the relationship between the force at the grip and the success rate during putting stroke, the putting grip sensor system using FSR sensors was developed. The system consisted of the hardware which had the sensor part with 8 sensors per putting glove and data acquisition part as well as the software which had the real-time monitoring program and the offline post-processing program. After experiments with elite-golfer using this system, it is possible to suggest the proper force ranges at the grip during putting stroke.

Development of Multi-Axis Force/Moment Sensor for Stroke Patient's Hand Fixing System Control (뇌졸중 환자의 손 고정장치 제어를 위한 다축 힘/모멘트센서 개발)

  • Kim, H.M.;Kim, J.W.;Kim, G.S.
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.351-356
    • /
    • 2011
  • Stroke patients should exercise for the rehabilitation of their fingers, because they can't use their hand and fingers. Their hand and fingers are fixed on the hand fixing system for rehabilitation exercise of them. But the hands clenched the fist of stroke patients are difficult to fix on it. In order to fix the hands and fingers, their palms are pressed with pressing bars and are controlled by reference force. The fixing system must have a five-axis force/moment sensor to force control. In this paper, the five-axis force/moment sensor was developed for the hand fixing system of finger-rehabilitation exercising system. The structure of the five-axis force/moment sensor was modeled, and designed using finite element method(FEM). And it was fabricated with strain-gages, then, its characteristic test was carried out. As a result, the maximum interference error is less than 2.43 %.

Sensing performance evaluation under various environment condition of stroke sensing cylinder using magnetic sensor (자기센서를 이용한 위치검출 실린더의 환경변화에 따른 성능평가)

  • 김성현;이민철;양순용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.636-639
    • /
    • 1996
  • We have developed a part of hydraulic stroke sensing cylinder using magnetic sensor that can detect each position under severe construction fields. In this paper, for evaluating the developed cylinder under various environment condition, thermal control systems and two hydraulic systems to be coupled consist of. The former is composed of an heater case, temperature sensor, and interface circuits which include SCR(silicon controlled rectifier) for the control of the voltage's phase. The latter is composed of an hydraulic cylinder for position control with solenoid valve (ON/OFF motion) and a load cylinder with proportional reducing valve. To obtain the various performance evaluation, it is carried out under high temperature condition in thermal system controlled by using Ziegler-Nichols PID tuning method and artificial disturbances such as impulse or constant force. The results show that the developed cylinder has good performance under the various environment condition.

  • PDF

Design of a Six-axis Force/moment Sensor for Wrist Twist-exercise Rehabilitation Robot (손목회전운동 재활로봇을 위한 6축 힘/모멘트센서 설계)

  • Kim, Hyeon Min;Kim, Gab Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.5
    • /
    • pp.529-536
    • /
    • 2013
  • Most serious stroke patients have the paralysis on their wrists, and can't use their hands freely. But their wrists can be recovered by rehabilitation exercises. Recently, professional rehabilitation therapeutists help stroke patients exercise their wrists in hospital. But it is difficult for them to rehabilitate their wrists, because the therapeutists are much less than stroke patients in number. Therefore, the wrist twist-exercise rehabilitation robot that can measure the twist force of the patients' wrists is needed and developed. In this paper, the six-axis force/moment sensor was designed appropriately for the robot. As a test result, the interference error of the six-axis force/moment sensor was less than 0.85%. It is thought that the sensor can be used to measure the wrist twist force of the patient.

Development of a Wrist Bending Rehabilitation Robot with a Three-axis Force Sensor (3축 힘 센서가 적용된 손목 굽힘 재활로봇 개발)

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.27-34
    • /
    • 2016
  • This paper describes the development of a rehabilitation robot that can provide wrist bending exercise to a severe stroke patient staying in a bed ward or at home. The developed rehabilitation robot has a three-axis force sensor which detects three directional force Fx, Fy, and Fz. The sensor measures a bending force (Fz) exerted on the wrist and the signal force (Fx and Fy) which can be used for the safety purpose. The robot was designed for severe stroke patients in bed, and the robot program was developed to perform a wrist bending rehabilitation exercise. In our tests including a nine-day experimental exercise, the developed force sensor-based robot operated effectively and safely.