• Title/Summary/Keyword: Strip-layout

Search Result 82, Processing Time 0.036 seconds

An Automated Process Planning System for Progressive Working of Electric Products (전기제품의 프로그레시브 가공을 위한 공정설계 자동화 시스템)

  • Kim, J. H.;Kim, C.;Choi, J. C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.198-206
    • /
    • 2000
  • This paper describes a research work of developing automated progressive process planning system for working electric products. An approach to the CAD system in based on the knowledge-based rules. Knowledge for the CAD system is formulated from plasticity theories experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD with a personal computer and is composed of three main modules which are input and shape treatment flat pattern layout and strip layout module. Based on knowledge-based rules the system is design by considering several factors such as radius and angle of bend material and thickness of product complexities of blank geometry and punch profile bending sequence and availability of press. Strip layout drawing automatically generated by piercing with punch profiles divided into for external area is simulated in 3-D graphic forms including bending sequences for the product with piercing and bending. Results obtained using the modules enable the manufacture of electronic products to be more efficient in this field.

  • PDF

A CAD/CAM System for Blanking or Piercing of Irregular Shaped-Sheet Metal Products (불규칙형상 박판제품의 블랭킹 및 피어싱용 CAD/CAM 시스템)

  • 최재찬;김철;박상봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.174-182
    • /
    • 1998
  • This paper describes a research work of developing a computer-aided design and machining of irregular shaped-sheet metal product for blanking or piercing operation. An approach to the CAD/CAM system is based on the knowledge-based rules. Knowledge for the CAD/CAM system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD and in customer tool kit on the SmartCAM with a personal computer and is composed of nine modules, which are input and shape treatment, flat pattern-layout, production feasibility check, blank-layout, strip-layout, die-layout, data conversion, modelling, and post-processor module. Based on knowledge-based rules, the system is designed by considering several factors, such as material and thickness of product, complexities of blank geometry and punch profile, diameter and material of a wire, and availability of press. This system is capable of generating NC data automatically according to drawings of die-layout module. Results which are carried out in each module will provide efficiencies to the designer and the manufacturer of blanking or piercing die in this field.

  • PDF

Development of The Multi Forming Type Ultra Precision Die for Sheet Metal ( Part I )- Production Part and Strip Process Layout -

  • Sim, Sung-Bo;Jang, Chan-Ho;Sung, Yul-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.253-257
    • /
    • 2001
  • This study reveals the sheet metal working with multi-forming type ultra precision process. They require analysis of many kinds of important factors, i.e. theory and practice of metal press working and its phenomena, die structure, machining condition for die making, die material, heat treatment of die components, know-how and so on. In this study, we designed and constructed a multi-forming ultra precision progressive die as a bending and drawing working of multi-stage and performed through the try out for thin sheet metal. This part I of papers related to the analysis of production part and strip process layout design through the metal forming simulation by DEFORM and IDEAS.

  • PDF

A Study on the Development of Progressive Die for Multi-Stage Forming

  • Sim, Sung-Bo;Jang, Chan-Ho;Sung, Yul-Min;Lee, Sung-Taeg
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.86-91
    • /
    • 2002
  • The production part requiring multiple processes such as piecing, blanking and notching, are performed with a high production rates in progressive die. In order to prevent the dejects of process result, the optimum of strip process layout design, die design, die making, and tryout with inspection etc. are needed. According to these factors of die development process, they required theory and practice of metal working process and its phenomena, die structure, machining conditions for die making, die materials, heat treatment of die camponents, know-how and so on. In this study, we designed and analyzed die camponents also simulated the strip process layout of multiple stage drawing by DEFORM. Especially the result of tryout and its analysis become to the feature of this study.

  • PDF

Development of the Practical and Adaptive Die of Fixed Stripper Type for Marine Part Sheet Metal Working(part 1)

  • Sim, Sung-Bo;Song, Young-Seok;Sung, Yul-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.35-39
    • /
    • 2000
  • The piercing and blanking of thin sheet metal working is specified division in press die design and making. In order to prevent the detects, the optimum design of the production part, strip process layout, die design, die making and try out etc. are necessary the analysis of effective factors. For example, theory and practice of metal shearing process and its phenomena, die structure, machine tool working for die making, die materials and its heat treatment, metal working in industrial and its know how etc. In this study, we analyzed whole of data base, theoretical back ground of metal working process, and then performed the progressive die tryout with the screw press. This study regards to the aim of small quantity of production parts press working. Part 1 of this study reveals with production part and strip process layout design.

  • PDF

A Study on the Progressive Die Development of Sheet Metal Forming Part (박판 포밍제품의 프로그레시브 금형개발에 관한 연구)

  • Sim, Sung-Bo;Lee, Sung-Taeg
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.43-49
    • /
    • 2004
  • The production parts have required multiple processes such as drawing, piercing, blanking and notching etc. are performed with a high production rates in progressive die. In order to prevent the defects of process result, the optimization of strip process layout design, die design, die making, and tryout etc. are needed. According to these factors of die development process, it has been required that the theory and practice of metal working process and its phenomena, die structure, machining conditions for die making, die materials, heat treatment of die components, processing know-how and so on. In this study, we designed and analyzed die components through the carrying out of upper relevant matters also simulated the strip process layout of multiple stage drawing by DEFORM. Especially the result of tryout and its analysis became to the feature of this study with a system of PDDC(Progressive Die design by computer).

  • PDF

A Study on the Development of Two side carrier Type Progressive Die toy Multi-Stage Drawing Process

  • Sim, Sung-Bo;Jang, Chan-Ho;Lee, Sung-Taeg
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.341-346
    • /
    • 2002
  • The production part requiring multiple processes such as piecing, blanking and notching are performed with a high production rates in progressive die. In order to prevent the defects of process result, the optimum of strip process layout design, die design, die making, and tryout with inspection etc. are needed. According to these factors of die development process, they required theory and practice of metal working process and its background, die structure, machining conditions for die making, die materials, heat treatment of die components, know-how and so on. In this study, we designed and analyzed die components also simulated the strip process layout of multiple stage drawing by DEFORM. Especially the result of tryout and its analysis become to the feature of this study.

  • PDF

An Automated Nesting and Process Planning System of Irregularly Shaped-Sheet Metal Product With Bending and Piercing Operation for Progressive Working (굽힘 및 피어싱 공정을 갖는 불규칙형상 제품의 프로그레시브 가공을 위한 네스팅 및 공정설계 자동화 시스템)

  • Choi, Jae-Chan;Kim, Byung-Min;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.22-32
    • /
    • 1998
  • This paper describes a research work of developing a computer-aided design of irregularly shaped-sheet metal product with bending and piercing operation for progressive working. An approach to the CAD system is based on the knowledge-based rules. Knowledge for the CAD system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD with a personal computer and is composed of five main modules, which are input and shape treatment, flat pattern-layout, production feasibility check, blank-layout, and strip-layout module. Based on knowledge-based rules, the system is designed by considering several factors, such as radius and angle of bend, material and thickness of product, complexities of blank geometry and punch profile, and availability of press. This system is capable of unfolding a formed sheet metal part to give flat pattern and automatically account for the adjustment of bend allowances to match tooling requirements by checking dimensions and the best utilization ratio of blank-layout within bending production feasibility area which is beyond ${\pm}30^{\circ}$ degrees intersecting angle between grain flow and bending edge line and which is suitable to progressive bending operation. Also the strip-layout drawing generated by a bending and a piercing operation according to punch profiles divided into automatically for external area of irregularly shaped-sheet metal product is displayed in graphic forms.

  • PDF

Development of the Practical and Adaptive Die of Piloting Stripper Type for Sheet Metal (part 1)

  • Sim, Sung-Bo;Sung, Yul-Min;Song, Young-Seok;Park, Hae-Kyoung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.109-113
    • /
    • 2000
  • The piercing and blanking of thin sheet metal working with a pilot punch guide is specified division in press die design and making. In order to prevent the detects, the optimum design of the production part, strip process layout, die design, die making and try out etc. are necessary the analysis of effective factors. For example, theory and practice of metal shearing process and its phenomena, die structure, machine tool working for die making, die materials and its heat treatment, metal working in industrial and its know how etc. In this study, we analyzed whole of data base, theoretical back ground of metal working process, and then performed the progressive die tryout with the screw press. This study regards to the aim of small quantity of production part's press working by piloting for accurate guide of actual sheet metal strip. Part 1 of this study reveals with production part and strip process layout for the die design.

  • PDF

An automated CAD System of Product with Bending Constraints and Piercing for Progressive Working (구속을 갖는 굽힘 및 피어싱용 제품의 프로그레시브 가공을 위한 자동화된 CAD 시스템)

  • Choe, Jae-Chan;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.174-182
    • /
    • 1999
  • This paper describes a research work of developing a computer-aided design of product with bending constraints and piercing for progressive working. an approach to the CAD system is based on the knowledge-based rules. Knowledge for the CAD system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written AutoLISP on the AutoCAD with a personal computer and is composed of four main modules, which are input and shape treatment, flat pattern layout, production feasibility check, and strip-layout module. Based on knowledge-based rules, the system is designed by considering several factors, such as radius and angle of bend, material and thickness of product, complexities of blank geometry and punch profile, bending sequence, availability of press. Strip layout drawing generated by piercing with punch profiles divide into automatically for external area is shown into graphic forms, including bending sequences for the product with piercing and bending constraints. Results obtained using the modules enable the designer and manufacturer of piercing and bending dies to be more efficient in this field.

  • PDF