• Title/Summary/Keyword: Strip rate

Search Result 183, Processing Time 0.026 seconds

Influence of Climate Change on the Lifecycle of Construction Projects at Gaza Strip

  • El-Sawalhi, Nabil;Mahdi, Mahdi
    • Journal of Construction Engineering and Project Management
    • /
    • v.5 no.2
    • /
    • pp.1-10
    • /
    • 2015
  • There is a high confidence based on scientific evidence that climate is changing over time. Now climate change is considered as one of the challenges facing the construction industry. As no project is risk free and climate change has a strong impact on the different phases of the construction project lifecycle. This research aimed at providing a platform of knowledge for the construction management practitioners about the impacts of climate change on the construction projects lifecycle, identify the most dangerous climate change factors on the construction project lifecycle, and identify the most affected phase by climate change factors through the construction projects lifecycle. The study depended on the opinions of civil engineers who have worked in the construction projects field among the reality of Gaza Strip. Questionnaire tool was adopted as the main research methodology in order to achieve the desired objectives. The questionnaire included 127 factors in order to obtain responses from 88 construction practitioners out of 98 representing 89.79% response rate about the influence of climate change on the generic lifecycle of construction projects. The results deduced that the most significant influence on the construction project lifecycle was related to the extreme weather events, rainfall change, and temperature change respectively. There was a general agreement between the respondents that the most affected phase by temperature, rainfall, and extreme weather events is the execution phase. The results also asserted with a high responses scale on the need to alternative procedures and clear strategies in order to face the climate change within construction industry.

Intercooler for Multi-stage Turbocharger Design and Analysis of the Hydrogen Reciprocating Engine for HALE UAV (고고도 장기체공 무인기용 수소 왕복 엔진의 다단터보차저용 인터쿨러 설계 및 해석)

  • Lee, Yang Ji;Rhee, Dong Ho;Kang, Young Seok;Lim, Byoeung Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.65-73
    • /
    • 2017
  • Intercoolers for multi-stage turbocharger of the hydrogen reciprocating engine for HALE UAV are installed for reducing the charged air inlet temperature of the engine. The intercooler is air to air, cross flow, plate-fin type and the fin configuration is offset-strip fin which is referenced from the heat exchanger of the ERAST. Most of HALE UAV's cruising altitude is 60,000 ft and the density of air for this altitude is very low compared to sea level. Therefore the required heat transfer area for the HALE UAV is about three-times bigger than the sea level. Consequently, it is essential to design to meet the required efficiency of intercooler in the range of not excessively growing the weight of the heat exchanger. The quasi-one dimensional heat transfer design/analysis for satisfying the requirement of the engine are written in this paper. The numerical analyses for estimating the coolant flow rate of the engine bay and pressure loss in the header and core are also summarized.

Establishment of Manufacturing Conditions for Magnesium Alloys by the Melt Drag Method using Equipment with a Forming Belt (성형벨트를 부착시킨 장비를 이용하여 용융드래그방법으로 제작한 마그네슘 합금의 제작조건 확립)

  • Han, Chang-Suk;Kwon, Yong-Jun
    • Korean Journal of Materials Research
    • /
    • v.31 no.10
    • /
    • pp.576-581
    • /
    • 2021
  • To improve the shortcomings and expand the advantages of the single-roll melt drag method, which is a type of continuous strip casting method, the melt drag method with a molding belt is applied to AZ31 magnesium alloy. By attaching the forming belt to the melt drag method, the cooling condition of the thin plate is improved, making it possible to manufacture thin plates even at high roll speed of 100 m/min or more. In addition, it is very effective for continuous production of thin plates to suppress oxidation of the molten metal on the roll contact surface by selecting the protective gas. As a result of investigating the relationship between the contact time between the molten metal and the roll and the thickness of the sheet, it is possible to estimate the thickness of the sheet from the experimental conditions. The relationship between the thin plate thickness and the grain size is one in which the thinner the thin plate is, the faster the cooling rate of the thin plate is, resulting in finer grain size. The contact state between the molten metal and the roll greatly affects the grain size, and the minimum average grain size is 72 ㎛. The thin plate produced using this experimental equipment can be rolled, and the rolled sample has no large cracks. The tensile test results show a tensile strength of 303 MPa.

Development of Large-area Plasma Sources for Solar Cell and Display Panel Device Manufacturing

  • Seo, Sang-Hun;Lee, Yun-Seong;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.148-148
    • /
    • 2011
  • Recently, there have been many research activities to develop the large-area plasma source, which is able to generate the high-density plasma with relatively good uniformity, for the plasma processing in the thin-film solar cell and display panel industries. The large-area CCP sources have been applied to the PECVD process as well as the etching. Especially, the PECVD processes for the depositions of various films such as a-Si:H, ${\mu}c$-Si:H, Si3N4, and SiO2 take a significant portion of processes. In order to achieve higher deposition rate (DR), good uniformity in large-area reactor, and good film quality (low defect density, high film strength, etc.), the application of VHF (>40 MHz) CCP is indispensible. However, the electromagnetic wave effect in the VHF CCP becomes an issue to resolve for the achievement of good uniformity of plasma and film. Here, we propose a new electrode as part of a method to resolve the standing wave effect in the large-area VHF CCP. The electrode is split up a series of strip-type electrodes and the strip-type electrodes and the ground ones are arranged by turns. The standing wave effect in the longitudinal direction of the strip-type electrode is reduced by using the multi-feeding method of VHF power and the uniformity in the transverse direction of the electrodes is achieved by controlling the gas flow and the gap length between the powered electrodes and the substrate. Also, we provide the process results for the growths of the a-Si:H and the ${\mu}c$-Si:H films. The high DR (2.4 nm/s for a-Si:H film and 1.5 nm/s for the ${\mu}c$-Si:H film), the controllable crystallinity (~70%) for the ${\mu}c$-Si:H film, and the relatively good uniformity (1% for a-Si:H film and 7% for the ${\mu}c$-Si:H film) can be obtained at the high frequency of 40 MHz in the large-area discharge (280 mm${\times}$540 mm). Finally, we will discuss the issues in expanding the multi-electrode to the 8G class large-area plasma processing (2.2 m${\times}$2.4 m) and in improving the process efficiency.

  • PDF

Grain Evolution during Bulge Blow forming of AZ31 Alloy (AZ31 합금의 온간 부풀림 성형시 결정립 변화에 관한 연구)

  • Baek, S.G.;Lee, Y.S.;Lee, J.H.;Kown, Y.N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.452-455
    • /
    • 2008
  • In the present study, blow forming characteristics of commercially roiled AZ31 alloy sheets were investigated. Two different kinds of AZ31 sheets were originally fabricated by using direct casting and strip casting methods respectively. Both sheets have similar grain sizes of about $7{\mu}m$ with a relatively equiaxed structure after rolling. A series of tensile tests were carried out to get flow behavior in terms of temperature and strain rate. Also, grain size effect was investigated by annealing as-received sheet at elevated temperatures. Elongation increased with temperature increment as well expected. However, the differences in tensile test condition did not give much difference in elongation even at the temperature range where a large elongation would be expected with such as fine grain of $7{\mu}m$. Blow forming experiments showed that forming condition did not result in higher difference in dome height. However, the interesting feature from this study was that formability of this AZ31 alloy got different with stress condition. Firstly, biaxial stress condition might result in lower temperature and strain rate dependencies compared to uniaxial tension results for both DC and SC sheets. Secondly, DC showed slower grain growth in uniaxial tension than in biaxial stress state while SC has much higher grain growth rage in uniaxial tension than in bulging.

  • PDF

Introduction and Feasibility on a New Technology for the Pipe Wall Thinning Evaluation of Nuclear Power Plants (원전 배관감육 평가를 위한 새로운 기법의 도입 및 타당성)

  • Hwang, Kyeong Mo;Yun, Hun;Park, Hyun Cheol
    • Corrosion Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.62-69
    • /
    • 2014
  • A huge number of carbon steel piping components installed in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), Cavitation, Flashing, and LDIE (Liquid Droplet Impingement Erosion). Those aging mechanisms can lead to thinning of the piping components. To manage the wall thinning degradation, most of utilities in the world predict the wall thinning rate based on the computational program such as CHECWORKS, COMSY, and BRT-CICERO, evaluate the UT (Ultrasonic Test) data, and determine next inspection timing, repair or replacement, if needed. There are several evaluation methods, such as band, blanket, and strip methods, commonly used for determining the wear of piping components from single UT inspection data. It has been identified that those single UT evaluation methods not only do not consider the manufacturing features of pipes, but also may exclude the data of the most thinned point when determining the representative wear rate of piping components. This paper describes a newly developed single UT evaluation method, E-Cross method, for solving above problems and introduces application examples for several pipes and elbows. It was identified that the E-Cross method using the length and width of UT data excluded the most thinned points appropriate as the single UT evaluation method for thinned piping components.

The Effects of Packing and Cooling Stages on the Molded Parts in Injection Molding Process (사출 성형시 보압 및 냉각 과정이 성형품에 미치는 영향)

  • 구본흥;신효철;이호상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1150-1160
    • /
    • 1993
  • The behavior of polystyrene in the strip cavity during the packing and cooling stages for an injection molding process is examined numerically. The mathematical model is based on the unified post-filling model and finite element/finite difference methods are used to solve simultaneously the continuity, momentum and energy equations coupled to an equation of state. Simulated results show that the density of the molded parts is lower in the core than at the skin, and that the hotter the melt or the higher the packing pressure, the higher the density in the core. The density variation during the packing stage comes up to 50% compared with the total density variation. Also, the density variation after gate sealing and the effect of cooling rate on the equation of state are negligible.

Effects of Injection Pressure and Injection Angle on Spray Characteristics in Loop Scavenged Type 2-stroke Engines (루프소기형태의 2행정기관에서 분사압력 및 분사각도에 따른 분무특성 연구)

  • Chae, S.;Ryou, H. S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.165-176
    • /
    • 1996
  • The flow field and spray characteristics for loop scavenged type 2stroke engine having pancake shape was numerically computed using KIVA-Ⅱ code. The cylinder has 1intake port, 2side intake ports and 1exhaust port with induced flow angle 25 deg. In engine calculation, the chop techniques is used to strip or add planes of cells across the mesh adjacent to the TDC and the BDC(ports parts) for preventing the demand of exceed time during the computation, providing a control on cell height in the squish region. The modified turbulent model including the consideration of the compressibility effect due to the compression and expansion of piston was also used. The case of 25 deg.(injection angle) which is opposite to scavenging flow direction shows better the distribution of droplets and the evaporation rate of droplets compared to other cases(0 deg., - 25 deg.). When injection pressure was increased, the spray tip penetration became longer. When injection pressure was increased, the interaction between the upward gas velocity and spray droplets strongly cause. Thus the breakup of droplets is strongly occurred and the evaporation rate of droplets was found to be better.

  • PDF

An Action Spectrum for Light-induced Growth rate in Pleurotus ostreatus (느타리버섯 생장에 미치는 광 감응성 작용 스펙트럼)

  • 이갑득
    • Journal of Life Science
    • /
    • v.10 no.5
    • /
    • pp.519-523
    • /
    • 2000
  • The action spectrum for light-induced growth of fruit body in Pleurotus ostreatus has been studied by irradiation at various wavelengths. Effective wavelengths were distributed from near ultraviolet to blue region of spectrum. The most effect of light was observed in the region between 340 to 520 nanometers. The growth weigth obtained from which has been irradiated 144 hours in the region of 340-520 nm increases 74%, on the contrary the observed growth weight has been observed in the longer wavelengths than 620 nm. The pileus size was promoted 30$\times$32% in the region of 340-500 nm, and retarded 22$\times$19% in the dark. the strip length was rearded 12% in the region of 340-500 nm, and promoted 38% in the dark. The color thickness for pileus is getting light in longer wavelengths.

  • PDF

Clinical Trial of Human Intravenous Immunoglobulin in a Dog with Generalized Pemphigus Foliaceus (개에서 발생한 전신성 낙엽상 천포창에 사람 면역글로불린의 임상적 적용)

  • Park, Seong-Jun
    • Journal of Veterinary Clinics
    • /
    • v.30 no.1
    • /
    • pp.61-65
    • /
    • 2013
  • An American Cocker Spaniel (3-year-old, intact female, 6.0 kg) was referred to the Veterinary Medical Teaching Hospital of Chungnam National University for evaluation of pustules and crusts in the periocular region, dorsal and ventral region of the trunk, and digits. Complete blood count (CBC) revealed leukocytosis with mature neutrophilia, and a serum biochemistry profile revealed hypoalbuminemia. Tape strip tests identified numerous neutrophils and acatholytic cells. Histopathology identified intraepithelial pustules with neutrophils and acantholytic keratinocytes. Definitive diagnosis of pemphigus foliaceus (PF) was made by direct immunofluorescence (DIF) test with goat anti-canine IgG antibody. The human intravenous immunoglobulin (IVIG) was administered at a rate of 15 ml/h over 6 hours for 4 days. After that, the dog was maintained on prednisolone (2.2 mg/kg, PO, SID) and azathioprine (2.0 m/kg, PO, SID). An infusion of IVIG (0.5 g/kg) was repeated 3 days after 4 weeks. After 10 weeks, the dog showed the remarkable regression of lesions.