• Title/Summary/Keyword: Strip process layout

Search Result 54, Processing Time 0.019 seconds

A Study on the Development of Computer Aider Die Design System for Lead Frame of Semiconductor Chip

  • Kim, Jae-Hun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.38-47
    • /
    • 2001
  • This paper decribes the development of computer-aided design of a very precise progressice die for lead frame of semiconductor chip. The approach to the system is based on knowledgr-based rules. Knowledge of fie이 experts. This system has been written in AutoLISP using AutoCAD ona personal computer and the I-DEAS drafting programming Language on the I-DEAS mater series drafting with on HP9000/715(64) workstation. Data exchange between AutoCAD and I-DEAS master series drafting is accomplished using DXF(drawing exchange format) and IGES(initial graphics exchange specification) files. This system is composed of six main modules, which are input and shape treatment, production feasibility check, strip layout, data conversion, die layout, and post processing modules. Based on Knowledge-based rules, the system considers several factors, such as V-notches, dimple, pad chamfer, spank, cavity punch, camber, coined area, cross bow, material and thickness of product, complexities of blank geometry and punch profiles, specifications of available presses, and the availability of standard parts. As forming processes and the die design system using 2D geometry recognition are integrated with the technology of process planning, die design, and CAE analysis, the standardization of die part for lead frames requiting a high precision process is possible. The die layout drawing generated by the die layout module s displayed in graphic form. The developed system makes it possible to design and manufacture lead frame of a semiconductor more efficiently.

  • PDF

A Study on the Development of Multi-pilotting-type Progressive Die for U-bending Part Process

  • Sim, Sung-Bo;Lee, Sung-Taeg;Jang, Chan-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.2
    • /
    • pp.45-51
    • /
    • 2003
  • The multi-piloting type progressive die for U-bending sheet metal production part is a very specific division. This study reveals the sheet metal forming process with multi-forming die by center carrier type feeding system. Through the FEM simulation by DEFORM, it was accepted to u-bending process as the first performance to design of strip process layout. The next process of die development was studied according to sequence of die development, i.e die structure, machining condition for die making, die materials, heat treatment of partially die components, know-how and so on. The feature of this study is the die development of scrapless progressive die of multi-stage through the modeling on the I-DEAS program, components drawing on the Auto-LISP, CAD/CAM application, ordinary machine tool operating and revision by tryout.

  • PDF

A Study on the Development of Computer Aided Die Design System for Lead Frame, Semiconductor (반도체 리드 프레임의 금형설계 자동화 시스템 개발에 관한 연구)

  • Choe, Jae-Chan;Kim, Byeong-Min;Kim, Cheol;Kim, Jae-Hun;Kim, Chang-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.123-132
    • /
    • 1999
  • This paper describes a research work of developing computer-aided design of lead frame, semiconductor, with blanking operation which is very precise for progressive working. Approach to the system is based on the knowledge-based rules. Knowledge for the system is formulated from pasticity theories, experimental results and the empirical knowledge of field experts. This system has been written in AutoLISP on the AutoCAD using a personal computer and in I-DEAS Drafting Programming Language on the I-DEAS Master Series Drafting with Workstation, HP9000/715(64). Transference of data between AutoCAD and I-DEAS Master Series Drafting is accomplished by DXF(drawing exchange format) and IGES(initial graphics exchange specification) methods. This system is composed of five modules, which are input and shape treatment, production feasibility check, strip-layout, data-conversion and die-layout modules. The process planning and Die design system is designed by considering several factors, such as complexities of blank geometry, punch profiles, and the availability of a press equipment and standard parts. This system provides its efficiecy for strip-layout, and die design for lead frame, semiconductor.

  • PDF

An automated process planning 8 die design using expert system for blanking or piercing of irregular shaped sheet metal products (불규칙성 박판제품의 프로그래시브 다이설계를 위한 자동화된 CAD시스템)

  • Kim, J. H.;Kim, C.;Choi, J. C.;Kim, B. M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.214-218
    • /
    • 1995
  • Much labor, an exceedingly long lead time, and the skills of experienced engineers are required for press tool design. To reduce such problems, several CAD systems for blanking or piercing have been developed. This paper describes a computer-aided design for blanking or piercing of irregularly shaped sheet metal products. An approach to the system is based on knowledge base rules. The process planning & die design system is designed by considering several factors, such as complexity of blank geometry, punch profile, and availability of press equipment and standard parts. Therefore, after checking a production feasibility for irregular shaped sheet metal products, this system which is implemented strip layout module can carry out a process planning and generate the strip layout in graphic forms. Also this system implemented die layout module can carry out a die design for each process which is obtained form the result of an automated process planning and generate parts and assembly drawing of a die set.

  • PDF

Development of the Multi Stage Type Die for Thin Sheet Metal Working

  • Sim, Sung-Bo;Park, Sun-Kyu;Lee, Sng-Hoon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.190-195
    • /
    • 2001
  • The piercing and blanking of thin sheet metal working is specified division in press die design and making. In order to prevent the defects, the optimum design of the production part, strip process layout, die design, die making and try out etc. are necessary the analysis of effective factors. For example, theory and practice of metal shearing process and it's phenomena, die structure, machine tool working for die making, die materials and it's heat treatment, metal working in field, their know how etc. are included in those factors. In this study, we analyzed whole of data base, theoretical back ground of metal working process, and then performed the progressive die tryout with the screw press.

  • PDF

Development of the Practical and Adaptive Die of Fixed Stripper Type for Marine Part Sheet Metal Working(part 2)

  • Sim, Sung-Bo;Song, Young-Seok;Sung, Yul-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.146-150
    • /
    • 2000
  • In order to prevent the defects, the optimum design of the production part, strip process layout, die design, die making and try out etc. are necessary the analysis of effective factors. For example, theory and practice of metal shearing process and it's phenomena, die structure, machine tool working for die making, die materials and it's heat treatment, metal working in field, their know how etc. are included in those factors. In this study, we analyzed whole of data base, theoretical back ground of metal working process, and then performed the progressive die tryout with the screw press. Part2 of this study reveals with ultra precision progressive die design, its making and tryout.

  • PDF

Development of the Practical and Adaptive Three Steps Die for Sheet Metal Working (part 2) (Die Design, Making and Tryout)

  • Sim, Sung-Bo;Song, Young-Seok;Sung, Yul-Min
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.229-233
    • /
    • 2000
  • In order to prevent the defects, the optimum design of the production part, strip process layout, die design, die making and try out etc. are necessary the analysis of effective factors. For example, theory and practice of metal shearing process and it's phenomena, die structure, machine tool working for die making, die materials and it's heat treatment, metal working in field, their know how etc. are included in those factors. In this study, we analyzed whole of data base, theoretical back ground of metal working process, and then performed the progressive die tryout with the screw press. Part2 of this study reveals with ultra precision progressive die design, its making and tryout.

  • PDF

An Automated Nesting and Process Planning System of Irregularly Shaped-Sheet Metal Product With Bending and Piercing Operation for Progressive Working (굽힘 및 피어싱 공정을 갖는 불규칙형상 제품의 프로그레시브 가공을 위한 네스팅 및 공정설계 자동화 시스템)

  • Choi, Jae-Chan;Kim, Byung-Min;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.22-32
    • /
    • 1998
  • This paper describes a research work of developing a computer-aided design of irregularly shaped-sheet metal product with bending and piercing operation for progressive working. An approach to the CAD system is based on the knowledge-based rules. Knowledge for the CAD system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD with a personal computer and is composed of five main modules, which are input and shape treatment, flat pattern-layout, production feasibility check, blank-layout, and strip-layout module. Based on knowledge-based rules, the system is designed by considering several factors, such as radius and angle of bend, material and thickness of product, complexities of blank geometry and punch profile, and availability of press. This system is capable of unfolding a formed sheet metal part to give flat pattern and automatically account for the adjustment of bend allowances to match tooling requirements by checking dimensions and the best utilization ratio of blank-layout within bending production feasibility area which is beyond ${\pm}30^{\circ}$ degrees intersecting angle between grain flow and bending edge line and which is suitable to progressive bending operation. Also the strip-layout drawing generated by a bending and a piercing operation according to punch profiles divided into automatically for external area of irregularly shaped-sheet metal product is displayed in graphic forms.

  • PDF

Development of Perforating Die for Manufacturing Fine Multi-perforated type Nail Files (미세 다수공 타입의 네일파일 제조용 퍼퍼레이팅 금형 개발)

  • 김세환
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.4
    • /
    • pp.309-314
    • /
    • 2004
  • 0.5mm thick steel is used to manufacture nail files. The first process is blanking and the second process is making about 300 holes of 0.8-l.0mm in diameter. This process depends mainly on etching which takes 33% of manufacturing cost and it can make manufacturing cost rise. The residual etching reagent is not environmentally friendly and the steel material is apt to rust as well. To solve these problems, researches on the following subjects are performed: proper material to prevent from rusting and strip layout strategies in stamping to replace etching process with press process which makes use of die. And new quill type punch is developed to replace the regular standard punch, one of the die parts, which frequently get broken while working. And these researches and developments lead to develop a progressive perforating die.

  • PDF

Development of Progressive Die CAD/CAM System for Manufacturing Lead Frame, Semiconductor (반도체 리드 프레임 제조를 위한 프로그레시브 금형의 CAD/CAM 시스템 개발)

  • Choi, J.-C.;Kim, B.-M.;Kim, C.;Kim, J.-H.;Kim, C.-B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.230-238
    • /
    • 1999
  • This paper describes a research work of developing computer-aided design of lead frame, semiconductor, with blanking operation which is very precise for progressive working. Approach to the system is based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. This system has been written in AutoLISP on the AutoCAD using a personal computer and in I-DEAS Drafting Programming Language on the I-DEAS Master Series Drafting with Workstation, HP9000/715(64) and tool kit on the ESPRIT. Transference of data among AutoCAD, I-DEAS Master Series Drafting, and ESPRIT is accomplished by DXF(drawing exchange format) and IGES(initial graphics exchange specification) methods. This system is composed of six modules, which are input and shape treatment, production feasibility check, strip-layout, die-layout, modelling, and post-processor modules. The system can design process planning and Die design considering several factors and generate NC data automatically according to drawings of die-layout module. As forming process of high precision product and die design system using 2-D geometry recognition are integrated with technology of process planning, die design, and CAE analysis, standardization of die part in die design and process planning of high pression product for semiconductor lead frame is possible to set. Results carried out in each module will provide efficiencies to the designer and the manufacturer of lead frame, semiconductor.

  • PDF