• 제목/요약/키워드: Strip footing

Search Result 59, Processing Time 0.02 seconds

Estimation of Equivalent Friction Angle and Cohesion of Near-Surface Rock Mass Using the Upper-Bound Solution for Bearing Capacity of Strip Footing (줄기초 지지력 상계해를 활용한 천부 암반의 등가마찰각과 등가점착력 산정)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.25 no.3
    • /
    • pp.284-292
    • /
    • 2015
  • The generalized Hoek-Brown failure criterion, the strength parameters of which are determined by using the GSI index, is an empirical nonlinear failure criterion of rock mass and has been widely employed in various rock engineering practices. Many rock engineering practitioners, however, are still familiar with the description of the strength of rock mass in terms of friction angle and cohesion. In addition, almost all rock mechanics softwares incorporate the simple linear Mohr-Coulomb function. Therefore, it is necessary to provide a tool to implement the Hoek-Brown function in the framework of the Mohr-Coulomb criterion. In this study, the use of upper-bound solution of limit analysis for bearing capacity of a strip footing resting on the ground surface is proposed for the estimation of the equivalent friction angle and cohesion of rock mass incorporating the generalized Hoek-Brown failure criterion. The upper-bound bearing capacity is expressed in terms of friction angle by use of the relationship between tangential friction angle and tangential cohesion implied in the generalized Hoek-Brown function. The friction angle minimizing the upper-bound bearing capacity is taken as the equivalent friction angle. Through the illustrative implementations of the proposed method, the influences of GSI, $m_i$ and D on the equivalent friction angle and cohesion are investigated.

Study on Behavior of Failure of Footing through Numerical Analysis (수치해석을 통한 기초지반의 파괴거동 고찰)

  • Lee, Seung-Hyun;Jang, In-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2212-2218
    • /
    • 2015
  • In order to find out the load bearing behavior of sand and clay which sustain three types of shallow footing, finite element analyses were performed. Failure zone of sand which sustain strip footing was affected by relative density of sand whereas, failure zone of clay was not affected by soil strength and it was similar to the failure zone which is considered in theory. Considering the shape of load-settlement curves obtained by numerical analyses, punching shear failure can be seen in loose sand and ultimate bearing load can not be seen in dense sand whereas, yielding point can be seen in clay. Ultimate bearing loads for sand predicted by theory were greater than those obtained by numerical analyses and ultimate bearing loads for clay predicted by theory were similar to those of numerical analyses. Ultimate bearing loads determined by 1 inch settlement criteria were slightly less than those of numerical analyses.

Numerical Analysis of Load Bearing Behavior of Shallow Foundations (얕은기초의 하중지지거동에 관한 수치해석)

  • Lee, Seung-Hyun;Lee, Su-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6322-6328
    • /
    • 2014
  • Finite element analyses were performed to find out the load bearing behavior of three kinds of shallow foundations. The analysis results for strip footing showed that local shear failure mode could be observed for a zero dilatancy angle and general shear failure mode could be seen for non-zero dilatancy angles. The ultimate bearing loads for non-zero dilatancy angles were approximately 1.5 times higher than that of a zero dilatancy angle. General shear failure mode was observed for circular footing and square footing regardless of the dilatancy angle. The ultimate bearing loads for a non-zero dilatancy angle were slightly greater than that for a zero dilatancy angle. A comparison of the load-settlement curves for three kinds of footing showed that the load bearing capacities for non-zero dilatancy angle were greater than those for a zero-dilatancy angle.

Analysis on the Behavior of Reticulated Root Piles for Reinforcing Footing using Computer Program (컴퓨터 프로그램을 이용한 기초보강용 그물식 뿌리말뚝의 거동 분석)

  • 박영호;변광욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.348-361
    • /
    • 1991
  • When reinforcing strip footing on a sand 8round with reticulated root piles, reinforcing effect depends on the length , number, cross sectional area, penetration angle, spacing, and Young's modulus of piles. the mode of action of reinfocement tendons in soil isn't one of carring developed tensile stresses but of anisotropic(uni-directional) reduction or even supression of one normal strain rate. R. H. Bassett and N. C. Last proposed that the reinforcement should be located on the direction of minor strain rate which coincides with the tensile strain rate in the velocity characteristics. Based on this proposal the author carried out a series of 2 - dimentional finite element analysis which varies the parameters mentioned above.

  • PDF

The Behavior of Shallow Foundation under Eccentric Loads by Centrifuge Model Experiment (원심모형시험에 의한 편심하중을 받는 얕은기초의 거동)

  • Yoo, Nam-Jae;Lee, Myung-Woog;Park, Byung-Soo;Jeong, Gil-Soo
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.229-240
    • /
    • 2002
  • This paper is an experimental and numerical work of Investigating the bearing capacity of shallow foundation of rubble mound under eccentric loads. Parametric centrifuge model tests at the 50g level environments with the model footings in the form of strip footing were performed by changing the loading location of model footing, relative density and materials for ground foundation. For the model ground, crushed rock sampled from a rocky mountain was prepared with a grain size distribution of having an identical coefficient of uniformity to the field condition. Model ground was also prepared with relative densities of 50 % and 80 %. For loading condition, model tests with and without eccentric load were carned out to investigate the effect of eccentric loads and a numerical analysis with the commertially available software of FLAC was performed. For numerical estimation with FLAC, the hyperbolic model of a nonlinear elastic constitutive relationship was used to simulate the stress-stram constitutive relationship of model ground and a series of triaxial compression test were carried out to find the parameters for this model Test results were analyzed and compared with Meyerhof method (1963), effective area method based on the limit equilibrium method, and a numerical analysis with FLAC.

  • PDF

A new model for T-shaped combined footings part I: Optimal dimensioning

  • Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.51-60
    • /
    • 2018
  • The foundations are classified into shallow and deep, which have important differences: in terms of geometry, the behavior of the soil, its structural functionality, and its constructive systems. The shallow foundations may be of various types according to their function; isolated footings, combined footings, strip footings, and slabs foundation. The isolated footings are of the type rectangular, square and circular. The combined footing may be rectangular, trapezoidal or T-shaped in plan. This paper presents a new model for T-shaped combined footings to obtain the most economical contact surface on the soil (optimal dimensioning) to support an axial load and moment in two directions to each column. The new model considers the soil real pressure, i.e., the pressure varies linearly. The classical model uses the technique of test and error, i.e., a dimension is proposed, and subsequently, the equation of the biaxial bending is used to obtain the stresses acting on each vertex of the T-shaped combined footing, which must meet the conditions following: The minimum stress should be equal or greater than zero, and maximum stress must be equal or less than the allowable capacity that can withstand the soil. To illustrate the validity of the new model, numerical examples are presented to obtain the minimum area of the contact surface on the soil for T-shaped combined footings subjected to an axial load and moments in two directions applied to each column.

Centrifuge Model Experiments and Numerical Analysis for the Bearing Capacity of Sloped Rubble Mound (경사진 사석층의 지지력에 관한 원심모형실험 및 수치해석)

  • Lee, Myung-Woog;Park, Byung-Soo;Jung, Gil-Soo;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.24 no.B
    • /
    • pp.95-105
    • /
    • 2004
  • This paper is an experimental and numerical research works about the effects of the b earing capacity of sloped rubble mound on the density of rubble mound and the position of footing. Centrifuge model tests were performed to investigate the bearing capacity of rubble m ound by changing the density of rubble mound and the location of loading in forms of s trip loading to simulate the caisson. Materials of rubble mound used in the model tests were crushed rocks having similar value of uniformity coefficient to the value in field. Two different relative densities of 80% and 90% were prepared during tests. The dimens ions of centrifuge model were trapezoidal shape of model mound having the bottom wid th of mound, 30cm and height of mound, 10cm. Gravity level applied during the centrif uge test was 50G. Surcharge loading in the forms of strip loading was applied on the t op of the sloped model mound. Tests were carried out by changing the position of loadi ng. The rigid model footing was located in the center of top of the model rubble mound and the edge of model footing was at the crest of mound. Test results were analyzed by using the limit equilibrium methods proposed by Meyer hof(1957) and Bowles(1982) and the numerical approach with FLAC being available com mercially software. For the numerical estimations with FLAC, the rubble mound was si mulated with the constitutive relationship of Mohr-Coulomb elasto-plastic model.

  • PDF

Comparison of Bearing Capacity Calculation Methods for Shallow Foundations (얕은기초의 지지력 산정방법에 관한 비교 연구)

  • 천병식;이정훈;김수봉
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.455-462
    • /
    • 2003
  • The current practice of estimating bearing capacity usually employs the conventional bearing capacity formula originally developed for strip footings under vertical central loading, In order account for the effect of footing shape and eccentricity and inclination of loads, correction factors are introduced in the formula, which are derived based on a number of small-scale model test observations. In this paper, comparison of several formulations of bearing capacity factors, as well as values of these factors, are presented. And the conventional bearing capacity equations are compared with some of other failure loci proposed for cohesive soil. Also, the bearing capacity of shallow foundation estimated by the conventional bearing capacity equations are compared with the experimental load test results.

  • PDF

A Study on Bearing Capacity according to the Number of Reinforcement Layers in Sandy Ground Reinforced by Mats of Equal-intervals (등간격의 매트로 보강된 모래지반의 보강층수에 따른 지지력에 관한 연구)

  • 임종철;박성재;주인곤;이재열;이민희
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.201-217
    • /
    • 1999
  • Bearing capacity of soil can be improved by several conventional ground improvement techniques like stabilization and compaction. In recent time, the use of reinforced soil has become popular due to the availability of durable strong geosynthetic materials. In this papers, through the laboratory model tests on sandy ground reinforced by mats about the strip footing under plane strain condition, the effects of bearing capacity improvement and behaviour of sandy ground were observed. And bearing capacities calculated by proposed method and measured by tests were compared.

  • PDF

A Study on Behaviour of Sandy Ground Reinforced by Geotextiles with Equal Vertical Spacings (일정한 연직간격의 지오텍스타일로 보강된 모래지반의 거동에 관한 연구)

  • Joo, In-Gon;Park, Yong-Boo;Park, Jong-Bae
    • Land and Housing Review
    • /
    • v.2 no.1
    • /
    • pp.79-85
    • /
    • 2011
  • The bearing capacity of a soil can be improved by conventional ground improvement techniques such as stabilization and compaction methods. Recently, the use of geotextiles in improving the bearing capacity of soils has become popular because of the availability of durable and strong geosynthetic materials. In this paper, through the laboratory model tests on sandy ground reinforced by geotextiles with the strip footing under plane strain condition, the effects of bearing capacity improvement on the sandy ground and its behaviour were investigated.