• 제목/요약/키워드: Strip bending test

검색결과 30건 처리시간 0.024초

진공증착법으로 제조된 Zn-Cr박막의 특성에 관한 연구 (A Study on the Properties of the Zn-Cr Alloy Films by Evaporation)

  • 주봉환;이규환;권식철;백운승
    • 연구논문집
    • /
    • 통권23호
    • /
    • pp.109-120
    • /
    • 1993
  • A study on corrosion and adhesion properties of evaporated Zn-Cr films were conducted on steel strip by two-source evaporater. Corrosion resistance of Zn-Cr coated steel was evaluated by salt spray test in 5% NaCl. Adhesion property of Zn-Cr films on steel substrate was evaluated by tape test after $180^\circC$ bending. Adhesion was improved with increasing the Cr content and reached the maximum at the Cr content of 6 to 8wt%. Corrosion resistance was enhanced with increasing the Cr content and improved by rolling Zn-Cr coated specimen, as a post-treatment.

  • PDF

CFRP 스트립 표면매립공법으로 보강된 철근콘크리트 보의 전단거동 특성 (Characteristics of Shear Behavior of Reinforced Concrete Beams Strengthened with Near Surface Mounted CFRP Strips)

  • 한상훈;홍기남;신병길;임진묵;곽소신
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권5호
    • /
    • pp.178-189
    • /
    • 2011
  • 본 연구에서는 CFRP 표면부착 공법의 대안으로 최근에 관심을 끌고 있는 NSM(Near Surface Mounted)기법으로 전단 보강된 RC 부재의 전단강도를 평가하기 위한 실험과 해석을 수행하였다. 전단철근이 없는 7개의 실험체에 대해 4점 휨실험을 실시하였다. 실험변수로는 CFRP 스트립의 경사($45^{\circ}$, $90^{\circ}$)와 스트립의 간격(250mm, 200mm, 150mm, 100mm)이 고려되었다. 실험적 연구를 통해 NSM공법으로 전단 보강된 RC 부재의 전단강도와 파괴모드에 대한 각 실험변수의 영향을 평가하였다. 실험결과는 $45^{\circ}$ 경사로 스트립을 보강한 실험체들은 스트립의 파단으로 파괴된 반면, 수직으로 스트립을 보강한 실험체들은 스트립의 슬립으로 파괴됨을 보였다. 또한, $45^{\circ}$ 경사 스트립이 수직 스트립보다 전단저항력 증가시킬뿐만 아니라 파괴시의 처짐을 크게 증가시키는 것으로 나타났다. 추가적으로 RBSN 해석은 NSM기법으로 전단 보강된 RC 부재의 균열형상 및 하중-처짐관계를 적절하게 예측하였다.

Shear strengthening of reinforced concrete beams with minimum CFRP and GFRP strips using different wrapping technics without anchoring application

  • Aksoylu, Ceyhun
    • Steel and Composite Structures
    • /
    • 제44권6호
    • /
    • pp.845-865
    • /
    • 2022
  • In this study, the performance of shear deficient reinforced concrete (RC) beams with rectangular cross-sections, which were externally bonded reinforced (EBR) with high strength CFRP and GFRP strips composite along shear spans, has been experimentally and analytically investigated under vertical load. In the study, the minimum CFRP and GFRP strips width over spacing were considered. The shear beam with turned end to a bending beam was investigated by applying different composite strips. Therefore various arising in each of strength, ductility, rigidity, and energy dissipation capacity were obtained. A total of 12 small-scaled experimental programs have been performed. Beam dimensions have been taken as 100×150×1000 mm. Four beams have been tested as unstrengthened samples. This paper focuses on the effect of minimum CFRP and GFRP strip width on behaviours of RC beams shear-strengthened with full-wrapping, U-wrapping, and U-wrapping+longitudinal bonding strips. Strengthened beams showed significant increments for flexural ductility, energy dissipation, and inelastic performance. The full wrapping strips applied against shear failure have increased the load-carrying capacity of samples 53%-63% interval rate. Although full wrapping is the best strengthening choice, the U-wrapping and U-wrapping+longitudinal strips of both CFRP and GFRP bonding increased the shear capacity by 53%~75% compared to the S2 sample. In terms of ductility, the best result has been obtained by the type of strengthening where the S5 beam was completely GFRP wrapped. The experimental results were also compared with the analytically given by ACI440.2R-17, TBEC-2019 and FIB-2001. Especially in U-wrapped beams, the estimation of FIB was determined to be 81%. The estimates of the other codes are far from meeting the experimental results; therefore, essential improvements should be applied to the codes, especially regarding CFRP and GFRP deformation and approaches for longitudinal strip connections. According to the test results, it is suggested that GFRP, which is at least as effective but cheaper than CFRP, may be preferred for strengthening applications.

억지말뚝 흙막이공법에 설치된 복합버팀의 보강효과에 관한 실험적 연구 (An Experimental Study on the Reinforcement Effect of Installed composite stiffener on Earth Retaining Walls using Stabilizing Piles)

  • 김태효;임종철;박이근;권정근
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1224-1239
    • /
    • 2008
  • The earth retaining walls using stabilizing piles can be applied to shallow excavation works without any stiffener. But, It demends a variety of installed composite stiffener on the earth retaining walls when it is installed as deep excavation works. Because, it causes an excessive displacement of walls. This research tried to overcome the problems created by the above issues and intended to apply the composite stiffener. The model test, focused on the effect of installed composite stiffener, measured the bending stress with stabilizing piles and walls, the settlement of earth surface, the displacement of walls for a step excavation and an increase in strip load. With the test results and soil deformation analysis, the reinforcement effect(relating to control displacement and earth presure) was analyzed in a qualitative and quantitative manner. It is expected to overcome a deep excavation works.

  • PDF

Predicting restraining effects in CFS channels: A machine learning approach

  • Seyed Mohammad Mojtabaei;Rasoul Khandan;Iman Hajirasouliha
    • Steel and Composite Structures
    • /
    • 제51권4호
    • /
    • pp.441-456
    • /
    • 2024
  • This paper aims to develop Machine Learning (ML) algorithms to predict the buckling resistance of cold-formed steel (CFS) channels with restrained flanges, widely used in typical CFS sheathed wall panels, and provide practical design tools for engineers. The effects of cross-sectional restraints were first evaluated on the elastic buckling behaviour of CFS channels subjected to pure axial compressive load or bending moment. Feedforward multi-layer Artificial Neural Networks (ANNs) were then trained on different datasets comprising CFS channels with various dimensions and properties, plate thicknesses, and restraining conditions on one or two flanges, while the elastic distortional buckling resistance of the elements were determined according to the Finite Strip Method (FSM). To develop less biased networks and ensure that every observation from the original dataset has the chance of appearing in the training and test set, a K-fold cross-validation technique was implemented. In addition, the hyperparameters of the ANNs were tuned using a grid search technique to provide ANNs with optimum performances. The results demonstrated that the trained ANNs were able to predict the elastic distortional buckling resistance of CFS flange-restrained elements with an average accuracy of 99% in terms of coefficient of determination. The developed models were then used to propose a simple ANN-based design formula for the prediction of the elastic distortional buckling stress of CFS flange-restrained elements. Finally, the proposed formula was further evaluated on a separate set of unseen data to ensure its accuracy for practical applications.

A new model for T-shaped combined footings part I: Optimal dimensioning

  • Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Geomechanics and Engineering
    • /
    • 제14권1호
    • /
    • pp.51-60
    • /
    • 2018
  • The foundations are classified into shallow and deep, which have important differences: in terms of geometry, the behavior of the soil, its structural functionality, and its constructive systems. The shallow foundations may be of various types according to their function; isolated footings, combined footings, strip footings, and slabs foundation. The isolated footings are of the type rectangular, square and circular. The combined footing may be rectangular, trapezoidal or T-shaped in plan. This paper presents a new model for T-shaped combined footings to obtain the most economical contact surface on the soil (optimal dimensioning) to support an axial load and moment in two directions to each column. The new model considers the soil real pressure, i.e., the pressure varies linearly. The classical model uses the technique of test and error, i.e., a dimension is proposed, and subsequently, the equation of the biaxial bending is used to obtain the stresses acting on each vertex of the T-shaped combined footing, which must meet the conditions following: The minimum stress should be equal or greater than zero, and maximum stress must be equal or less than the allowable capacity that can withstand the soil. To illustrate the validity of the new model, numerical examples are presented to obtain the minimum area of the contact surface on the soil for T-shaped combined footings subjected to an axial load and moments in two directions applied to each column.

안정화 선재의 YBCO 초전도 접합 특성 (A study on the bonding properties of YBCO coated conductors with stabilizer tape)

  • 김태형;오상수;하동우;김호섭;고락길;신형섭;박경채
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제8권3호
    • /
    • pp.23-26
    • /
    • 2006
  • For mechanical and electrical stability and environment protection. Cu and stainless steel stabilizers are laminated to a Ag layer to produce a composite neutral-axis(N-A) architecture in which the YBCO layer is centered between the oxide buffered metallic substrate and stabilizer strip lamination. This architecture allows the wire to meet operational requirements including stresses at cryogenic temperature. winding tensions as well as mechanical bending requirements including thermal and electrical stability under fault current conditions. We have experimentally studied mechanical properties of the laminated stainless steel and Cu stabilizers on YBCO coated conductors. We have laminated YBCO coated conductors by continuous dipping soldering process. We have investigated lamination interface between solder and stabilizer of the YBCO coated conductor. We evaluated bonding properties. tensile / shear bonding strength. and peeling strength laminated YBCO coated conductors.

스텔스 소자의 보호층 도포 및 기계적 성능 평가 연구 (Deposition of Protective Layer on Stealth Sheet and Evaluation of the Protected Sheet's Mechanical Performance)

  • 소상연;한재원
    • 한국광학회지
    • /
    • 제34권5호
    • /
    • pp.185-191
    • /
    • 2023
  • 유연 스텔스 소재의 실용성 향상을 위해 보호층을 입힌 뒤의 경도, 유연성, 보호층과 스텔스 소재의 접착력을 평가하였다. 우선 ISO 15184 연필 시험법을 통해 경도를 측정하였으며, 보호층을 입히기 전과 비교하여 경도가 HB에서 3H로 3등급 올라가는 것을 확인할 수 있었다. 유연성은 ASTM D522 시험법에 따라 소재를 특정 직경의 원기둥에 대고 구부린 뒤 균열 생성 여부를 확인하며 평가하였고, 그 결과 균열이 생성되지 않는 최소 직경이 0.125인치임을 확인하였다. 접착력은 ASTM D3359 시험법에 따라 접착 띠를 보호층에 붙였다 떼어내면서 보호층이 박리되는 비율로 평가하였다. 이를 통해 보호층을 입혔을 시 군용 접착력 한계 조건인 4B보다 높은 결과(5B)를 얻었다.

섬유 강화 컴포지트의 수리 후 접합 강도 (Bond strength of fiber reinforced composite after repair)

  • 김민정;김경호;최광철
    • 대한치과교정학회지
    • /
    • 제36권3호
    • /
    • pp.188-197
    • /
    • 2006
  • 교정 치료 시 사용되는 섬유 강화 컴포지트(FRC, fiber reinforced composite)는 구강 내에서 저작압 등의 지속적인 응력과 수분 흡수 등의 이유로 파절이 일어나는 경우가 있다. 이 때 모든 FRC를 제거하지 않고 수리(repair)하는 경우에 적절한 강도를 얻기 위해 첨가해야 할 FRC의 양 및 그 파절 양상을 알아보고자 하였다. 두 개의 FRC strips를 1, 2, 3, 그리고 4mm 만큼 겹쳐(E1, E2, E3, E4군) 시편을 만드는 방법으로 수리를 재현한 후 light emitting diode 광중합기로 중합하고, 3점 굽힘 실험을 시행하여 겹침 길이와 접합 강도간의 관계에 대해 조사하였다. 최대 하중치는 E4군에서 2.67N으로 최대였고, 대조군(2.39N), E3군(2.35N), E2군(2.10N), 그리고 E1군(1.75N)의 순이었다. 강성 역시 최대 하중치와 같이 E4군(2.32 N/mm)에서 최대치를 기록하였으나, E3군(2.06N/mm)의 강성이 대조군(1.88N/mm)보다 더 큰 값을 보였다. 겹침 길이가 길수록 완전히 두 조각으로 파절되기 보다 가운데 또는 critical section 에서 굽힘 양상을 보였다. 반면 겹침 길이가 짧은 경우 두 조각으로 부러지는 파절 양상을 보였다. 이상의 실험에서 길이 10 mm인 연결자 형태의 FRC의 수리 시 적절한 강도를 얻기 위해서는 최소 3 mm의 strips를 겹쳐야 하고, 이 때 주로 나타나는 실패 양상인 굽힘을 최소화하기 위해 연결 부위에 바로 인접하여 두께가 급격하게 변하는 critical section의 보강이 필요할 것으로 사료된다.

가스 포일 베어링으로 지지되는 연료전지 전기자동차용 공기압축기의 회전체동역학적 성능 측정 및 예측 (Rotordynamic Performance Measurements and Predictions of a FCEV Air Compressor Supported on Gas Foil Bearings)

  • 황성호;문창국;김태호;이종성;조경석;하경구;이창하
    • Tribology and Lubricants
    • /
    • 제35권1호
    • /
    • pp.44-51
    • /
    • 2019
  • The paper presents the rotordynamic performance measurements and model predictions of a fuel cell electric vehicle (FCEV) air compressor supported on gas foil bearings (GFBs). The rotor has an impeller on one end and a thrust runner on the other end. The front (impeller side) and rear (thrust side) gas foil journal bearings (GFJBs) are located between the impeller and thrust runner to support the radial loads, and a pair of gas foil thrust bearings are located on both sides of the thrust runner to support the axial loads. The test GFJBs have a partial arc shim foil installed between the top foil and bump strip layers to enhance hydrodynamic pressure generation. During the rotordynamic performance tests, two sets of orthogonally installed eddy-current displacement sensors measure the rotor radial motions at the rotor impeller and thrust ends. A series of speed-up and coast-down tests to 100k rpm demonstrates the dominant synchronous (1X) rotor responses to imbalance masses without noticeable subsynchronous motions, which indicates a rotordynamically stable rotor-GFB system. Finite element analysis of the rotor determines the rotor free-free (bending) natural modes and frequencies well beyond the maximum rotating frequency. The predicted damped natural frequencies and damping ratios of the rotor-GFB system reveal rotordynamic stability over the speeds of interest. The imbalance response predictions show that the predicted critical speeds and rotor amplitudes strongly agree with the test measurements, thus validating the developed rotordynamic model.