• Title/Summary/Keyword: Strike force

Search Result 77, Processing Time 0.021 seconds

Key Strike Forces and Their Relation to High Level of Musculoskeletal Symptoms

  • Levanon, Yafa;Gefen, Amit;Lerman, Yehuda;Portnoy, Sigal;Ratzon, Navah Z.
    • Safety and Health at Work
    • /
    • v.7 no.4
    • /
    • pp.347-353
    • /
    • 2016
  • Background: This study aimed to investigate the relation between key strike forces and musculoskeletal symptoms (MSS). Moreover, this study presents a key strike force measurement method to be used in a workplace setting. The correlation between key strike force characteristics and MSS was previously studied, but the measurement methods used either a single-key switch or force platforms applied under the keyboard. Most of the studies were conducted in a laboratory setting. The uniqueness of measurement methods in the current study is their ability to measure forces applied to a specific key in a workplace setting and to provide more information about specific key strike forces during typing. Methods: Twenty-four healthy computer workers were recruited for the study. The demographic questionnaire, and self-reported questionnaires for psychosocial status (General Nordic Questionnaire for Psychological and Social Factors at Work) and for detecting MSS were filled up, which later helped in dividing the participants into two groups (12 participants with pain and 12 without pain). Participants typed a predetermined text that utilized the instrumented keys multiple times. The dynamic forces applied to the keys were recorded and collected, using four thin and flexible force sensors attached to the preselected keys according to their location. Results: The results demonstrated that participants with high levels of MSS, specifically in the back and neck, in the last year exerted significantly higher key strike forces than those with lower levels of symptoms (p < 0.005). Conclusion: The key strike force exerted while typing on a keyboard may be a risk factor for MSS, and should therefore be considered in ergonomic evaluations and interventional programs.

Changes in Impact Characteristics of the Body by Different Heel Strike Patterns during Running (달리기 시 착지 유형에 따른 인체에 미치는 충격의 변화)

  • Young-Seong Lee;Sang-Kyoon Park
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.4
    • /
    • pp.164-174
    • /
    • 2023
  • Objective: The aim of this study was to quantitatively analyze the impact characteristics of the lower extremity on strike pattern during running. Method: 19 young subjects (age: 26.53 ± 5.24 yrs., height: 174.89 ± 4.75 cm, weight: 70.97 ± 5.97 kg) participated in this study. All subjects performed treadmill running with fore-foot strike (FFS), mid-foot strike (MFS), and rear-foot strike (RFS) to analyze the impact characteristics in the lower extremity. Impact variables were analyzed including vertical ground reaction force, lower extremity joint moments, impact acceleration, and impact shock. Accelerometers for measuring impact acceleration and impact shock were attached to the heel, distal tibia, proximal tibia, and 50% point of the femur. Results: The peak vertical force and loading rate in passive portion were significantly higher in MFS and FFS compared to FFS. The peak plantarflexion moment at the ankle joint was significantly higher in the FFS compared to the MFS and RFS, while the peak extension moment at the knee joint was significantly higher in the RFS compared to the MFS and FFS. The resultant impact acceleration was significantly higher in FFS and MFS than in RFS at the foot and distal tibia, and MFS was significantly higher than FFS at the proximal tibia. In impact shock, FFS and MFS were significantly higher than RFS at the foot, distal tibia, and proximal tibia. Conclusion: Running with 3 strike patterns (FFS, MFS, and RFS) show different impact characteristics which may lead to an increased risk of running-related injuries (RRI). However, through the results of this study, it is possible to understand the characteristics of impact on strike patterns, and to explore preventive measures for injuries. To reduce the incidence of RRI, it is crucial to first identify one's strike pattern and then seek appropriate alternatives (such as reducing impact force and strengthening relevant muscles) on that strike pattern.

Effect of Swing Limb Heel-Strike Accuracy on Force Modulation and EMG While Stepping over an Obstacle versus Initiating Gait from a Position of Quiet Stance (보통 보행과 장애물 보행 시작시 에서 발꿈치 닿기 (Heel-Strike)의 정확도가 힘 조절과 EMG 에 미치는 영향)

  • Kim Hyeong-Dong;Park Rae-Jun;Bae Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.2
    • /
    • pp.196-209
    • /
    • 2003
  • 본 연구의 목적은 보통 보행과 장애물 보행 시작시에 accuracy constraints, 즉 발꿈치 닿기(swing limb heel-strike)의 정확도가 힘판(forceplate) 상에서 힘의 조절 (force modulation)과 EMG에 어떠한 영향을 미치는지를 분석하는 것이다. 본 실험의 대상자는 힘판(forceplate)위에서 보통 보행과 장애물 보행을 하되, 대상자 앞에 놓인 표적(target)에 정확히 발꿈치 닫기 (heel-strike)를 하도록 유도되었다. 이 때 힘판 자료와 전경골근(tibialis anterior)및 가자미근 (soleus)의 근전도 (EMG)의 활동을 양쪽 다리에서 측정하였다. 대상자 앞에 놓인 표적 (target)에 정확한 발꿈치 닫기(heel-strike)가 요구되었을 때에는 발끝밀기(swing toe-off) 시간이 증가되었으며 힘판(forceplate)상에서의 peak farce와 slope to peak force 가 감소되는 것으로 나타났다. 전경골근 (tibialis anterior)의 활동역시 큰 차이로 감소하는 것으로 나타났다. 하지만 보통 보행과 장애물 보행시의 근전도 혹은 힘판상의 자료에는 큰 차이점이 없는 것으로 나타났다. 이러한 결과는 기존의 상지(upper extremity)에서 보여준 운동제어 (motor control)의 이론들이 하지(lower extremity)에서도 동일하게 적용될 수 있음을 보여주는 것이다.

  • PDF

Foot Strike Simulation by a Slider Type Mechanical Model (미끄럼형 기계적 모델에 의한 디딤동작의 시뮬레이션)

  • Park, Hae-Soo;Shon, Woong-Hee;Yoon, Yong-San
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.269-278
    • /
    • 1989
  • The initial impact at foot strike is produced by a slider type mechanical model, which can be measured using a force platform to evaluate various shoes. The lower extremity and foot motion was filmed by a 16mm high speed movie camera and several points on the rear half of the shoe and those near the trochanter and the lateral epicondyle were digitized to provide the linear and angular positions and velocities during impact. With these observed kinematics, a slider type foot strike simulator composed of guide rail and sliding dummy is designed. The simulator system makes the artificial foot of the dummy with running shoe on it to follow the foot strike motion. The dummy has the relevant mass-spring-damper system modeled after McMahon's. The motion of the model is drived by the gravity force and the generated motion alone with the ground reaction forces are monitored by the same procedures afore mentioned producing the initial foot strike impact similar to the onto observed in human gait.

  • PDF

Sport biomechanical comparative analyses between general sporting shoe and functional walking shoe (보행용 전문 신발과 일반 운동화의 운동역학적 비교 분석)

  • Choi, Kyoo-Jeong;Kwon, Hee-Ja
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.161-173
    • /
    • 2003
  • This study was performed to investigate the kinematic and kinetic differences between functional walking shoe(FWS) and general sports shoe(GSS). The subjects for this study were 4 male adults who had the walking pattern of rearfoot strike with normal feet. The movement of one lower leg was measured using force platform and 3 video cameras while the subjects walked at the velocity of 2/1.5 m/s. The findings of this study were as follows 1. The angle of lower leg-ground and angle of knee with FWS was greater than with GSS at the moment of strike the floor and the moment of second peak ground reaction force. The decreasing rate of angle of ankle was smaller in FWS from the strike phase to the second peak ground reaction force. These mean upright walking and round walking along the shoe surface. 2. The maximal Increased angle of Achilles tendon and the minimal decreased angle of rearfoot were smaller in FWS very significantly(p<0.001). Thus FWS prevent the excessive pronation of ankle and have good of rear-foot control. 3. The vortical ground reaction force and the rate of it to the BW were smaller in FWS statistically(p<0.001). The loading rate was smaller in FWS, too, and thess represent the reduction of load on ankle joint and prevention of injuries on it.

A Study on Measures Enhancing Pilots' Aeronautical Decision Making(ADM) Competence to Prevent Bird Strike Incidents (항공기 조류충돌 예방을 위한 조종사 비행중 결심 역량 증진방안 연구)

  • Lee, Jang Ryong;Huh, Gang
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.2
    • /
    • pp.16-25
    • /
    • 2019
  • While various efforts are being made to ensure aviation safety, air accident rate induced by pilot human factors is still high worldwide. In particular, among pilot human factors, it would be the most important issue for pilots to anticipate and recognize flight environmental factors beyond their control and to make a positive decision making(ADM). In the Republic of Korea Air Force(ROKAF), there were many dizzying experiences induced by bird strike incidents and developed into dangerous moments such as damage to the aircraft and pilots' increased mental stress. It is a matter of serious concern in terms of safety management and human factors to dismiss bird strike incidents as inevitable misfortune due to environmental factors. In 2018, the ROKAF Aviation Safety Agency(ASA) conducted an experimental study to enhance pilots' ADM competence that can anticipate and avoid a bird strike. As the way of the study, 'Bird Strike Preventing Information' had been written and distributed every week by the ASA to flight units in the ROKAF during the period of the study. Through enhanced pilots' perceptual ADM competence, there was a noticeable number of reduction in bird strike incident compared to previous years of the experimental study.

Influence of Midsole Hardness on Vertical Ground Reaction force and Heel Strike Angle during Men's and Women's Running (남녀 주행 시 수직 지면반력 및 착지 각도에 미치는 신발 중저 경도의 영향)

  • Lee, Yong-Ku;Kim, Yoon-Hyuk
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.379-386
    • /
    • 2009
  • During running, the human body experiences repeated impact force between the foot and the ground. The impact force is highly associated with injury of the lower extremity, comfort and running performance. Therefore, shoemakers have developed shoes with various midsole properties to prevent the injury of lower extremity, improve the comfort and enhance the running performance. The purpose of this study is to investigate the influence of midsole hardness on vertical ground force and heel strike angle during men's and women's running. Five male and five female expert runners consented to participate in the study and ran at a constant speed with three different pairs of shoes with soft, medium and hard midsole respectively. In conclusion, regardless of gender, there was ill significant difference among three shoes in maximum vertical ground reaction force, impact force peak and stance time. However, the loading time decreased and the loading rate increased as the midsole became harder. Female subjects showed more sensitive reaction with respect to the midsole hardness, while male subjects showed subtle difference. The authors expect to apply this results for providing a guideline for utilizing proper midsole hardness of gender-specific shoe.

Effect of a Prolonged-run-induced Fatigue on the Ground Reaction Force Components (오래 달리기로 인한 피로가 지면반력 성분에 미치는 영향)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.3
    • /
    • pp.225-233
    • /
    • 2013
  • The purpose of this study was to estimate the potential injury via analyzing ground reaction force components that were resulted from a prolonged-run-induced fatigue. For the present study, passive and active components of the vertical ground reaction force were determined from time and frequency domain. Shear components of GRF also were calculated from time and frequency domain. Twenty subjects with rear foot contact aged 20 to 30, no experience in injuries of the extremities, were requested to run on the instrumented tread-mill for 160 minutes at their preference running speed. GRF signals for 10 strides were collected at 5, 35, 65, 95, 125, and 155 minute during running. In conclusions, there were no significant difference in the magnitude of passive force, impact load rate, frequency of the passive and active components in vertical GRF between running times except the magnitude of active force (p<.05). The magnitude of active force was significantly decreased after 125 minute run. The magnitude of maximum peak and maximum frequency of the mediolateral GRF at heel strike and toe-off have not been changed with increasing running time. The time up to the maximum peak of the anteroposterior at heel-strike moment tend to decrease (p<.05), but the maximum peak and frequency of that at heel and toe-off moment didn't depend significantly on running time.

New Mathematical Model and Parallel Hybrid Genetic Algorithm for the Optimal Assignment of Strike packages to Targets (공격편대군-표적 최적 할당을 위한 수리모형 및 병렬 하이브리드 유전자 알고리즘)

  • Kim, Heungseob;Cho, Yongnam
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.566-578
    • /
    • 2017
  • For optimizing the operation plan when strike packages attack multiple targets, this article suggests a new mathematical model and a parallel hybrid genetic algorithm (PHGA) as a solution methodology. In the model, a package can assault multiple targets on a sortie and permitted the use of mixed munitions for a target. Furthermore, because the survival probability of a package depends on a flight route, it is formulated as a mixed integer programming which is synthesized the models for vehicle routing and weapon-target assignment. The hybrid strategy of the solution method (PHGA) is also implemented by the separation of functions of a GA and an exact solution method using ILOG CPLEX. The GA searches the flight routes of packages, and CPLEX assigns the munitions of a package to the targets on its way. The parallelism enhances the likelihood seeking the optimal solution via the collaboration among the HGAs.

Analysis of the Influence of the Design Factors and Modeling for the 8inch Class Down-the-Hole Hammer (8인치급 다운더홀(DTH) 해머의 모델링 및 설계 인자에 따른 영향도 분석)

  • Lee, Chung No;Hong, Ki Chang;Jeong, Heon Sul
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.1-8
    • /
    • 2017
  • The Down-the-Hole hammer is one of the pneumatic drill equipment used for grinding, drilling, and mining. One the advantages of which is that a reduction work efficiency at deep site are relatively small compared to other drilling methods. Due to the large vibration in the underground area, it is difficult to measure the performance of the hammer, and hammer testing requires substantial production cost and operating expenses so research on the development of the hammer is insufficient. Therefore, this study has developed a dynamic simulation model that apprehends the operating principles of an 8-inch DTH hammer and calculates performance data such as performance impact force, piston speed, and BPM. By using the simulation model, design factors related to strike force and BPM were selected, and the influence of each design factors on performance was analyzed through ANOVA analysis. As a result, be the most important for BPM and the strike force are position of upper port that push the piston in the direction of the bit and in BPM, the size of the empty space between the bits and the piston is the second most important design factor.