• Title/Summary/Keyword: Stretch orientation

Search Result 13, Processing Time 0.018 seconds

Changes in Properties of Silk Monofilament Caused by Drawing and Hydrolysis (견 Monofilament의 연신과 가수분해에 의한 특성변화)

  • 김동건;최진협
    • Journal of Sericultural and Entomological Science
    • /
    • v.38 no.2
    • /
    • pp.160-167
    • /
    • 1996
  • The middle silk gland, that is a liquid silk thread gland consisting of silk protein, was taken out and a silk monofilament was made by drawing rapidly to approximately 3 times. In order to deteriorate the inter molecular hydrogen bonding force and to stretch in, the drawn silk filament was swoolen in boiling water. The results obtained are as follows ; The silk gland sample that just dried silk gland was occupied in crystalline region of silk-I type and random amorphous region. According to the examination of X-ray diffraction and thermal analysis, silk-II type crystal begins to appear partially in monofilament sample and spread to almost complet silk-II type crystal in 65.2% drawn sample. And, orientation of silk fibroin mlecule increased suddenly in early stage with a rise of drawing ratiofrom birefringence and density, and it was found that orientation of fibroin molecule was completed. As drawing ratio increases relation with time of hydrolysis, birefringence appeared almost fixed a tendency. Crystallization collapse by hydrolysis was not found in X-ray diffraction and thermal analysis. But, amorphous region began to flow by treated hydrolysis, that orientation of crystallization part was disturbed was supposed.

  • PDF

Kinematics of filament stretching in dilute and concentrated polymer solutions

  • McKinley, Gareth H.;Brauner, Octavia;Yao, Minwu
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.1
    • /
    • pp.29-35
    • /
    • 2001
  • The development of filament stretching extensional rheometers over the past decade has enabled the systematic measurement of the transient extensional stress growth in dilute and semi-dilute polymer solutions. The strain-hardening in the extensional viscosity of dilute solutions overwhelms the perturbative effects of capillarity, inertia & gravity and the kinematics of the extensional deformation become increasingly homogeneous at large strains. This permits the development of a robust open-loop control algorithm for rapidly realizing a deformation with constant stretch history that is desired for extensional rheometry. For entangled fluids such as concentrated solutions and melts the situation is less well defined since the material functions are governed by the molecular weight between entanglements, and the fluids therefore show much less pronounced strain-hardening in transient elongation. We use experiments with semi-dilute/entangled and concentrated/entangled monodisperse polystyrene solutions coupled with time-dependent numerical computations using nonlinear viscoelastic constitutive equations such as the Giesekus model in order to show that an open-loop control strategy is still viable for such fluids. Multiple iterations using a successive substitution may be necessary, however, in order to obtain the true transient extensional viscosity material function. At large strains and high extension rates the extension of fluid filaments in both dilute and concentrated polymer solutions is limited by the onset of purely elastic instabilities which result in necking or peeling of the elongating column. The mode of instability is demonstrated to be a sensitive function of the magnitude of the strain-hardening in the fluid sample. In entangled solutions of linear polymers the observed transition from necking instability to peeling instability observed at high strain rates (of order of the reciprocal of the Rouse time for the fluid) is directly connected to the cross-over from a reptative mechanism of tube orientation to one of chain extension.

  • PDF

A study on the development of high strength for acryl fiber during uniaxial stretching by swell-wet process (팽윤습열연신에 의한 아크릴섬유의 고강도화에 관한 연구)

  • Song, Kyoung-Hun;Lee, Mun-Soo
    • The Journal of Natural Sciences
    • /
    • v.8 no.1
    • /
    • pp.145-151
    • /
    • 1995
  • The stretching of synthetic fibers by hot dry process is very difficult, because these fibers have high glass transition temperature at above $150^{\circ}C$. But, we used a swell-wet stretching precess; the fibers are stretched in a swelling agent such as organic solvents at lower temperature. In this study, 100% acryl fibers were uniaxially stretched with free width at $70^{\circ}C$ by swell-wet process in organic solvents. The stretchability was estimated by stretching work. This work is concerned with stretching stress and strain, and initial modulus. We found that it is a good parameter for the estimatation of high strength to the acrylic fiber. The effects of stretching conditions on the molecular orientation for high strength and mechanical properties of PAN fibers were measured.

  • PDF