• Title/Summary/Keyword: Stretch Flange Forming

Search Result 9, Processing Time 0.02 seconds

Forming Characteristics of Laser Welded Tailored Blanks II : Stretch Flange Forming Characteristics (레이저 용접 테일러드 블랭크의 기본 성형특성 II : 신장플랜지 성형특성)

  • Park, Gi-Cheol;Han, Su-Sik;Kim, Gwang-Seon;Gwon, O-Jun
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.36-48
    • /
    • 1998
  • In order to analyze the stretch flange forming characteristics of tailored blanks. laser welded blanks of different thickness and strength combinations were prepared and hole expansion tests were done. The stretch flange formability of laser welded blanks was reduced as increasing the deformation restraining force($strength{\times}thickness$) ratio between two welded sheets. Simulation of stretch forming mode deformation and comparson with experimental results showed that the stretch flange formabili-ty was influenced not only by the difference of the deformation restraining forces between two base sheets but also by the difference of the deformation restraining forces between base sheet and weld. Therefore the stretch flange formability was reduced more rapidly than tensile elongation as increas-ing the deformation restraining force ration. It was also found that simulation of stretch flange forming was more accurate when material properties of weld was given.

  • PDF

Effects of Blank Design factors on Stretch Flange Forming of the Tailored Blank Using Taguchi Method (다구찌법을 이용한 테일러드 블랭크의 신장플랜지 성형에 미치는 설계 인자의 영향 분석)

  • 백승엽;권재욱;이경돈
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.339-347
    • /
    • 2000
  • For the successful forming of tailored blank, it is important to control the deformation of the stretch flange mode, which is strong1y dependent upon the location of weld line and blank shape. In order to investigate the effects of tailored blank design factors on the stretch flange forming, we made the model die which can simulate stretch flange mode. Taguchi method was employed to analyze the sensitivity of blank design factors for the forming of tailored blank. From the results of experiment S/N ratios were calculated and using Variance Analysis, significance of parameters and optimal condition of each factors were extracted. Based on these analyses, the weld line height and the strength ratio and the arc center height were selected as effective parameter. The analysed result was practically applied for Side outer panel stamping process.

  • PDF

Optimization of Stretch Flange Forming of Laser Welded Tailored Blank (레이저 용접 테일러드 블랭크 신장 플랜지의 성형 최적화)

  • 인정제;안덕찬
    • Transactions of Materials Processing
    • /
    • v.10 no.4
    • /
    • pp.283-293
    • /
    • 2001
  • Laser welded tailored blanks(TB) are increasingly used in automotive parts. Among these, TB side panel has forming difficulties in stretch flanging areas such as front and center pillar lower region. To avoid splits in the stretch flanging areas, Proper design of blank shape and drawbeads are essential In this study, the forming simulaton is carried out to investigate the influences of blank shape and drawbeads on stretch flange formability of different thickness TB. And an optimization procedure including the effects of both the blank design and drawbeads is presented. The optimization procedure proposed in this study is expected to be effectively used in blank and die design of TB side panel.

  • PDF

Effect of Punching Conditions on the Stretch Flange Formability of Cold rolled Steels for Deep Drawing (편칭조건이 가공용 냉연강판의 신장플랜지 성형성에 미치는 영향)

  • 전영우
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.161-164
    • /
    • 1999
  • In order to investigate the effect of punching condition on the stretch flange formability of sheet for deep drawing hole expansion tests at various edge condition were done. Edge conditions were changed by altering tool clearances artifical defects grinding and deburring. For a determination of optimum edge condition of side panel of automobile punched section analysis and forming results were studied and the laboratory test results were used. In case of considered side panel tool clearance should be less than 15% and punched edge should be uniform without defects for safe forming

  • PDF

Study on the Influence of Die Corner Radius for Deep Drawing of Elliptical Product of Automobile (자동차용 타원형 디프 드로잉 제품의 다이 반경에 관한 연구)

  • 허영민;박동환;강성수
    • Transactions of Materials Processing
    • /
    • v.11 no.8
    • /
    • pp.668-675
    • /
    • 2002
  • The circles deform into various shape during deformation, the major and minor axes of which indicate the direction of the major and minor principal strains. Likewise, the measured dimensions are used to determine the major and minor principal strain magnitudes. This circular grid technique of measuring strains can be used to diagnose the causes of necking and fracture in industrial practice and to investigate whether these defects were caused by material property variation, changes in lubrication, of incorrect press settings. In non-axisymmetric deep drawing, three modes of forming regimes are found: draw, stretch, plane strain. The stretch mode for non-axisymmetric deep drawing could be defined when the major and minor strains are positive. The draw mode could be defined when the major strain is positive and minor strain is negative, and plane strain mode could be defined when the major strain is positive and minor strain is zero. Through experiments the draw mode was shown on the wall and flange are one of a drawn cup, while the plane strain and the stretch mode were on the punch head and the punch corner area respectively, We observed that the punch load of elliptical deep drawing was decreased according to increase of die corner radius and the thickness deformation of minor side was more large than major side.

Trimming Line Design using Progressive Development Method and One Step FEM (점진 전개기법 및 유한요소 역해석법을 이용한 자동차 판넬 트리밍 라인 설계)

  • Song, Y.J.;Chung, W.J.;Park, C.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.68-71
    • /
    • 2006
  • Traditional section-based method develops blank along section planes and find trimming line by generating loop of end points. This method suffers from inaccurate results for regions with out-of-section motion. In this study, new fast method to find feasible trimming line is proposed. One step FEM is used to analyze the flanging and incremental development method is proposed to handle bad-shaped mesh and undercut part. Also in order to remedy mesh distortion during development, energy minimization technique is utilized. The proposed method is verified by shrink/stretch flange forming and successfully applied to the complex industrial applications such as door outer flanging process.

  • PDF

The Effects of Volume Ratio and Shape on the Formation of Adiabatic Shear Band in WHA (텅스텐 중합금의 부피분율, 입자형상에 따른 단열전단밴드 형성 연구)

  • 이승우;송흥섭;문갑태
    • Transactions of Materials Processing
    • /
    • v.11 no.8
    • /
    • pp.682-690
    • /
    • 2002
  • The formation of adiabatic shearband in tungsten heavy alloys(WHA) was studied in this investigation. Five prismatic specimens were loaded by high velocity impacts and treated as plane strain problems. To find out the effect of particle's volume ratio, specimens containing 81%, 93% and 97% volume percents of tungsten particles were used. Also the effects of particle's geometry and size on the formation of shearband were studied for 81% volume percent alloys by small size particle model, large size particle model and undulated particle models, and the results were discussed.be used to diagnose the causes of necking and fracture in industrial practice and to investigate whether these defects were caused by material property variation, changes in lubrication, or incorrect press settings. In non-axisymmetric deep drawing, three modes of forming regimes are found: draw, stretch, plane strain. The stretch mode for non-axisymmetric deep drawing could be defined when the major and minor strains are positive. The draw mode could be defined when the major strain is positive and minor strain is negative, and plane strain mode could be defined when the major strain is positive and minor strain is zero. Through experiments the draw mode was shown on the wall and flange are one of a drawn cup, while the plane strain and the stretch mode were on the punch head and the punch corner area respectively, We observed that the punch load of elliptical deep drawing was decreased according to increase of die corner radius and the thickness deformation of minor side was more large than major side.

A Study of Automobile Product Design using Hole Expansion Testing of High Strength Steels (고장력강의 구멍 확장 실험을 이용한 자동차부품 설계연구)

  • Park, B.C.;Bae, K.U.;Gu, S.M.;Jang, S.H.;Hong, S.H.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.337-343
    • /
    • 2010
  • Current need of weight reduction in automotive part increases the application for high strength steel (HSS). The various types of high strength steels have been used to produce chassis part, control arms and trailing arms for weight reduction and increasing of fatigue durability such as dual phase steel (DP) and ferrite bainite steel (FB). But, DP and FB steels have proven to show inferiority in durability as well as press formability. Edge cracking occurred often in flange forming and hole expansion processes is the major failure encountered. This paper discussed the behavior of edge stretchability of high strength steel of DP and FB steels. Experimental works have been conducted to study the effect of punch clearance and burr direction on hole expansion ratio (HER). Also finite element simulation (FEM) has been preformed to clarify the mechanism of flange crack and support the experimental results on HER of DP and FB steels. It was simulated the whole process of blanking process following by hole expansion process and ductile fracture criterion named the modified Cockcroft-Latham model which was used to capture the fracture initiation. From the hole expansion tests and FEM simulation studies it was concluded that ferrite bainite steel showed better stretch-flangeability than dual phase steel. It was attributed to the lower work hardening rate of ferrite bainite steel than dual phase steel at the sheared edge.

Trimming Line Design using Incremental Development Method and Finite Element Inverse Method (점진 전개기법 및 유한요소 역해석법을 이용한 자동차 패널 트리밍 라인 설계)

  • Chung, W.J.;Park, C.D.;Song, Y.J.;Oh, S.W.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.445-452
    • /
    • 2006
  • In most of automobile body panel manufacturing, trimming process is generally performed before flanging. To find feasible trimming line is crucial in obtaining accurate edge profile after flanging. Section-based method develops blank along manually chosen section planes and find trimming line by generating loop of end points. This method suffers from inaccurate results of edge profile. On the other hand, simulation-based method can produce more accurate trimming line by iterative strategy. In this study, new fast simulation-based method to find feasible trimming line is proposed. Finite element inverse method is used to analyze the flanging process because final shape after flanging can be explicitly defined and most of strain paths are simple in flanging. In utilizing finite element inverse method, the main obstacle is the initial guess generation for general mesh. Robust initial guess generation method is developed to handle genera] mesh with very different size and undercut. The new method develops final triangular mesh incrementally onto the drawing tool surface. Also in order to remedy mesh distortion during development, energy minimization technique is utilized. Trimming line is extracted from the outer boundary after finite element inverse method simulation. This method has many advantages since trimming line can be obtained in the early design stage. The developed method is verified by shrink/stretch flange forming and successfully applied to the complex industrial applications such as door outer flanging process.