• 제목/요약/키워드: Stress-strain relation

검색결과 333건 처리시간 0.019초

가압경수형 핵연료 피복관 지르칼로이-4의 항복현상에 대한 고온 수증기 산화의 영향 -구리 맨드렐 팽창시험법- (Effect of High Temperature Steam Oxidation on Yielding of Zircaloy-4 PWR Fuel Cladding -Expanding Copper Mandrel Test-)

  • Kye-Ho Nho;Sun-Pil Choi;Byong-Whi Lee
    • Nuclear Engineering and Technology
    • /
    • 제21권2호
    • /
    • pp.111-122
    • /
    • 1989
  • 고온 수증기(1323 K)분위기에서 산화시킨 지르칼로이-4 피복관으로, 구리 맨드렐 팽창실험(Copper Mandrel Expension Test)을 변형률(Strain Rate)이 $3.0\times10^{-5}$/sec일때 673-1173 K 온도 범위에서 수행하였다. 본 연구에서, 산화매개변수(Ki)는 시간(t)의 제곱근에 비례하고 $(Ki=\delta_{kit}\frac{1}{2}$), 비례상수($\delta_{ki}$)는 무게증가(Weight Gain), Zr02의 두께, $\alpha$(0) 층에 대하여 각각 0.281, 2.82, 2.313을 사용하였다. 지르칼로이-4의 고온(873-1073 K) 소성변형에 의한 활성화 에너지는 Zr02가 높은 강도를 갖기 때문에 산화 시간이 5분에서 60분으로 증가함에 따라 251 KJ/mol에서 323KJ/mo1로 증가하였다. 산화막 두께, K와 항복 응력의 관계는 ($\sigma/C)^n=K^m$exp (Q/RT)인 관계식을 얻었다. 여기서 n은 6.9, m은 5.7, 그리고 Q가 251, 258, 316, 323 KJ/mo1에 대해 C는 0.155, 0.138, 0.051, 0.046MPa이다.

  • PDF

세립분 함유율에 따른 점토질 모래의 역학적 특성 및 적용성 평가 (Evaluation of Mechanical Characteristics and Applicability of Clayey Sand by Fines Content)

  • 김정면;안준영;허재영;이승주;김영석;문범수;김용성
    • 한국지반신소재학회논문집
    • /
    • 제22권3호
    • /
    • pp.47-59
    • /
    • 2023
  • 본 연구에서는 점토질 모래(SC)를 대상으로 실내시험을 수행하여 물리적 특성, 압밀/투수 특성, 응력-변형 특성을 분석하고, 세립분 함유량에 따라 모래에서 점토로 흙의 역학적 성질이 변화되는 전환 세립분 함유율을 도출하였다. 또한 현장 적용성 평가를 위해 실제 과다침하로 인하여 문제가 발생된 연약지반 개량 현장의 계측자료를 수집하여 실내시험 및 수치해석 결과를 바탕으로 도출된 침하특성과 현장에서 계측된 실제 침하특성을 비교·분석하여 SC의 압밀 대상층 적용성 평가를 수행하였다. 실내시험 및 압밀해석 결과 SC는 세립분 함유율 25%이상에서 사질토에서 점성토로의 역학적 특성 변화가 나타났으며, 점성 토로의 역학적 특성 전환은 점토입자의 함유율과 매우 밀접한 관계가 있는 것으로 나타났다. 연약지반 현장의 수치해석을 통해 전환 세립분 함유율 이상의 점토질 모래를 압밀 대상층으로 적용한 경우, 침하량이 계측침하량 대비 평균 91.2%로 거의 일치하는 결과를 확인하였다. 따라서 연약지반 설계에서 압밀대상층 범위 선정 시 전환 세립분 함유율 이상의 점토질 모래는 연약지반에 포함하여 적용하는 것이 바람직할 것으로 판단된다.

에폭시 수지 모르터의 특성에 관한 실험적 연구 (Experimental Studies on the Properties of Epoxy Resin Mortars)

  • 연규석;강신업
    • 한국농공학회지
    • /
    • 제26권1호
    • /
    • pp.52-72
    • /
    • 1984
  • This study was performed to obtain the basic data which can be applied to the use of epoxy resin mortars. The data was based on the properties of epoxy resin mortars depending upon various mixing ratios to compare those of cement mortar. The resin which was used at this experiment was Epi-Bis type epoxy resin which is extensively being used as concrete structures. In the case of epoxy resin mortar, mixing ratios of resin to fine aggregate were 1: 2, 1: 4, 1: 6, 1: 8, 1:10, 1 :12 and 1:14, but the ratio of cement to fine aggregate in cement mortar was 1 : 2.5. The results obtained are summarized as follows; 1.When the mixing ratio was 1: 6, the highest density was 2.01 g/cm$^3$, being lower than 2.13 g/cm$^3$ of that of cement mortar. 2.According to the water absorption and water permeability test, the watertightness was shown very high at the mixing ratios of 1: 2, 1: 4 and 1: 6. But then the mixing ratio was less than 1 : 6, the watertightness considerably decreased. By this result, it was regarded that optimum mixing ratio of epoxy resin mortar for watertight structures should be richer mixing ratio than 1: 6. 3.The hardening shrinkage was large as the mixing ratio became leaner, but the values were remarkably small as compared with cement mortar. And the influence of dryness and moisture was exerted little at richer mixing ratio than 1: 6, but its effect was obvious at the lean mixing ratio, 1: 8, 1:10,1:12 and 1:14. It was confirmed that the optimum mixing ratio for concrete structures which would be influenced by the repeated dryness and moisture should be rich mixing ratio higher than 1: 6. 4.The compressive, bending and splitting tensile strenghs were observed very high, even the value at the mixing ratio of 1:14 was higher than that of cement mortar. It showed that epoxy resin mortar especially was to have high strength in bending and splitting tensile strength. Also, the initial strength within 24 hours gave rise to high value. Thus it was clear that epoxy resin was rapid hardening material. The multiple regression equations of strength were computed depending on a function of mixing ratios and curing times. 5.The elastic moduli derived from the compressive stress-strain curve were slightly smaller than the value of cement mortar, and the toughness of epoxy resin mortar was larger than that of cement mortar. 6.The impact resistance was strong compared with cement mortar at all mixing ratios. Especially, bending impact strength by the square pillar specimens was higher than the impact resistance of flat specimens or cylinderic specimens. 7.The Brinell hardness was relatively larger than that of cement mortar, but it gradually decreased with the decline of mixing ratio, and Brinell hardness at mixing ratio of 1 :14 was much the same as cement mortar. 8.The abrasion rate of epoxy resin mortar at all mixing ratio, when Losangeles abation testing machine revolved 500 times, was very low. Even mixing ratio of 1 :14 was no more than 31.41%, which was less than critical abrasion rate 40% of coarse aggregate for cement concrete. Consequently, the abrasion rate of epoxy resin mortar was superior to cement mortar, and the relation between abrasion rate and Brinell hardness was highly significant as exponential curve. 9.The highest bond strength of epoxy resin mortar was 12.9 kg/cm$^2$ at the mixing ratio of 1:2. The failure of bonded flat steel specimens occurred on the part of epoxy resin mortar at the mixing ratio of 1: 2 and 1: 4, and that of bonded cement concrete specimens was fond on the part of combained concrete at the mixing ratio of 1 : 2 ,1: 4 and 1: 6. It was confirmed that the optimum mixing ratio for bonding of steel plate, and of cement concrete should be rich mixing ratio above 1 : 4 and 1 : 6 respectively. 10.The variations of color tone by heating began to take place at about 60˚C, and the ultimate change occurred at 120˚C. The compressive, bending and splitting tensile strengths increased with rising temperature up to 80˚ C, but these rapidly decreased when temperature was above 800 C. Accordingly, it was evident that the resistance temperature of epoxy resin mortar was about 80˚C which was generally considered lower than that of the other concrete materials. But it is likely that there is no problem in epoxy resin mortar when used for unnecessary materials of high temperature resistance. The multiple regression equations of strength were computed depending on a function of mixing ratios and heating temperatures. 11.The susceptibility to chemical attack of cement mortar was easily affected by inorganic and organic acid. and that of epoxy resin mortar with mixing ratio of 1: 4 was of great resistance. On the other hand, when mixing ratio was lower than 1 : 8 epoxy resin mortar had very poor resistance, especially being poor resistant to organicacid. Therefore, for the structures requiring chemical resistance optimum mixing of epoxy resin mortar should be rich mixing ratio higher than 1: 4.

  • PDF