• Title/Summary/Keyword: Stress-strain behavior

Search Result 1,713, Processing Time 0.024 seconds

The Study on the Simple Measurement by Using the Strain Gauge at Dam Dynamic Behavior Analysis (댐 거동 분석에서의 Strain Gauge를 이용한 단일 계측에 관한 연구)

  • Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.1
    • /
    • pp.5-11
    • /
    • 2007
  • Internal stress variation in the face slab concrete induced by reservoir water pressure may affect on the stability of the dam so that the reclamation type of strain gauge is applied for measuring internal stress variation. In this study, internal as well as external stress variation of dam was measured by using strain gauge that was reclaimed to the ${\circ}{\circ}$ dam. In the result, it was confirmed that other measurements by relevant gauges need to be supplemented as the use of strain gauge only is insufficient to evaluate the stability analysis and global behavior of the dam.

  • PDF

An Overstress Model for Non-proportional Loading of Nylon 66 (Nylon 66의 무비례 하중에 대한 과응력 모델)

  • Ho, Gwang-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2056-2061
    • /
    • 2001
  • Non-proportional loading tests of Nylon 66 at room temperature exhibit path dependent behavior and plasticity-relaxation interactions. The uniaxial formulation of the viscoplasticity theory based on overstress (VBO), which has been used to reproduce the nonlinear strain rate sensitivity, relaxation, significant recovery and cyclic softening behaviors of Nylon 66, is extended to three-dimensions to predict the response in strain-controlled, comer-path tests. VBO consists of a flow law that is easily written for either the stress or the strain as the independent variable. The flow law depends on the overstress, the difference between the stress and the equilibrium stress that is a state variable in VBO. The evolution law of the equilibrium stress in turn contains two additional state variables, the kinematic stress and the isotropic stress. The simulations show that the constitutive model is competent at modeling the deformation behavior of Nylon 66 and other solid polymers.

An Experimental Study on Stress-Strain Behavior of Confined Concrete Columns with Rectangular Sections (직사각형 단면 콘크리트 기둥의 응력-변형 거동에 관한 실험연구)

  • Oh, Byung-Hwan;Kim, Ki-Wan;Choi, Seung-Won;Park, Young-Ho
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.345-352
    • /
    • 2005
  • The purpose of this study is to analyze the stress-strain behavior of confined concrete columns with rectangular section. Uniaxial concentric loading tests of nineteen concrete columns with rectangular section ($150{\times}100$, $250{\times}100$, $350{\times}100\;mm$) were conducted. The main variables are transverse reinforcement volumetric ratio and spacing, cross tie arrangement, cross-section aspect ratio, and concrete strength. From the present experiments, it was found that the increase of transverse reinforcement ratio increases the maximum stress and ductility ratio and the reduction of the spacing of transverse reinforcement also increases the ductility and effective confinement. The increase of the aspect ratio of the cross-section does not influence much the stress-strain behavior of rectangular columns within the aspect ratio range of 3.5. The effect of concrete strength on ductility is also discussed.

  • PDF

Dynamic Deformation Behavior of Aluminum Alloys Under High Strain Rate Compressive/Tensile Loading

  • Lee, Ouk-Sub;Kim, Guan-Hee;Kim, Myun-Soo;Hwang, Jai-Sug
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.787-795
    • /
    • 2003
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions such as seismic loading are required to provide appropriate safety assessment to these mechanical structures. The Split Hopkinson Pressure Bar (SHPB) technique with a special experimental apparatus can be used to obtain the material behavior under high strain rate loading conditions. In this paper, dynamic deformation behaviors of the aluminum alloys such as A12024-T4, A1606 IT-6 and A17075-T6 under both high strain rate compressive and tensile loading conditions are determined using the SHPB technique.

Effect of strain rate on the mechanical behavior of carbon/epoxy composites subjected to high pressure (정수압을 받는 carbon/epoxy 복합재의 변형률 속도 효과)

  • 이지훈;김만태;이경엽
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.191-191
    • /
    • 2003
  • It is well-known that the mechanical behavior of fiber-reinforced composites under hydrostatic pressure environment is different from that of atmospheric pressure environment. It is also known that the mechanical behavior of fiber-reinforced composites is affected by strain rate. In this work, we investigated the effect of strain rate on the compressional elastic modulus and fracture stress of fiber-reinforced composites under hydrostatic pressure environment. The material used in the compressional test was unidirectional carbon/epoxy composites and the hydrostatic pressures applied was 250 MPa. Compressional tests were performed applying various strain rates of 0.05 %/sec, 0.25 %/sec, 0.45 %/sec, and 0.75 %/sec. The results showed that the elastic modulus increased with increasing strain rate while the fracture stress was little affected by the strain rate.

  • PDF

Determination of Deformation Behavior of the Al6060-T6 under high Strain Rate Tensile Loading Using SHPB Technique (SHPB 기법을 이용한 A16061-T6의 고속 인장 변형거동 규명)

  • Lee, Eok-Seop;Kim, Gwan-Hui;Hwang, Si-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3033-3039
    • /
    • 2000
  • Mechanical properties of the materials used for transportations and industrial machinery under high stain rate loading conditions have been required to provide appropriate safety assessment to these mechanical structures. The Split Hopkinson Pressure Bar(SHPB) technique with a special experimental apparatus can be used to obtain the material properties under high strain rate loading condition. There have been many studies on the material behavior under high strain rate compressive loading compared to those under tensile loading. In this paper, mechanical properties of the aluminum alloy, Al6061-T6, under high strain rate tensile loading were determined using SHPB technique.

Dynamic deformation behavior of aluminum alloys under high strain rate compressive/tensile loading (상용 알루미늄 합금의 고속 인장/압축 변형거동 규명)

  • Lee, O.S.;Kim, G.H.;Kim, M.S.;Hwang, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.268-273
    • /
    • 2000
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions are required to provide appropriate safety assessment to these mechanical structures. The Split Hopkinson Pressure Bar(SHPB) technique, a special experimental apparatus, can be used to obtain the material behavior under high strain rate loading condition. In this paper, dynamic deformation behaviors of the aluminum alloys, Al2024-T4, Al6061-T6 and Al7075-T6, under high strain rate compressive and tensile loading are determined using SHPB technique.

  • PDF

Effect of Strain Rate on Plastic Deformation Behavior of Y-CSZ Single Crystal

  • Cheong, Deock-Soo;Kim, Chang-Sam
    • Korean Journal of Materials Research
    • /
    • v.20 no.1
    • /
    • pp.7-11
    • /
    • 2010
  • Yttria stabilized zirconia (Y-CSZ) single crystals show plastic deformation at high temperatures by activating dislocations. The effect of strain rate on the plastic behavior of this crystal was studied. As increasing strain rate from $\varepsilon=1.04\times10^{-5} sec^{-1}$ to $2.08\times10^{-5} sec^{-1}$ the yield drop was suppressed and resulted in higher Young's modulus and yield stress. Dislocation structures of the strained crystals were analyzed using a transmission electron microscope to elucidate the plastic behavior of these crystals. In the early stage of plastic deformation, dislocation dipoles and prismatic dislocation loops were formed in both samples. However, dislocation density was increased by increasing strain rate. Strong sessile dislocations were observed in the sample with higher strain rate, which may cause the higher work hardening.

Deformation Behaviour of Ti-8Ta-3Nb During Hot Forging

  • Lee Kyung Won;Ban Jae Sam;Kim Sun Jin;Cho Kyu Zong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.13-18
    • /
    • 2006
  • Ti-8Ta-3Nb, as a new biomaterial, was prepared by cast and swaging process. Their deformation behavior of Ti-8Ta-3Nb alloy has been characterized on the basis of its flow stress variation obtained from the true strain rate compression testing in the temperature of $700-900^{\circ}C$ and strain rate of $0.001-10\;s^{-1}$. At the strain rates lower than $0.1\;s^{-1}$ and the all temperature ranges which consist of two phase ${\alpha}+{\beta}$ as well as single ${\beta}$ phase fields, the flow curves show a small degree of flow softening behavior. In contrast, the shapes of the flow curves at other strain rates indicate unstable behavior. The shapes of the flow curves were similar in both as-cast and swaged specimen as well as in both ${\alpha}+{\beta}$ phase and ${\beta}$ phase. The flow stress data did not obey the kinetic rate equation over the entire regime of testing but a good fit has been obtained in the intermediate range of temperatures ($750-850^{\circ}C$). In this range, a stress exponent value of about 7.7 in as-cast specimens and about 6.2 in swaged specimens with an apparent activation energy of about 300 kJ/mol and about 206 kJ/mol respectively have been evaluated.

A Study on Non-linear Behavior in Welded Structures by Mechanical Stress Release Method (기계적 응력 완화법에 의한 용접구조물의 비선형 거동에 관한 연구)

  • 김정현;장경복;윤훈성;강성수;조상명
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.66-71
    • /
    • 2003
  • The release of residual stress by mechanical loading and unloading is often performed in the fabrication of box structure fur steel bridge. The proper degree of loading and unloading is significant at release method of residual stress by mechanical loading because that degree is changed by material and geometric shape of welded structure. Therefore, the simulation model that could exactly analyze the release of residual stress by mechanical loading is to be necessary. In this study, the non-linear behavior of weldments under external loading and unloading, such as the decrease and increase of structure stiffness, was investigated by monitoring of nominal stress and strain. Tensile loading and unloading test and the proper degree of stress relaxation was measured by sectioning technique using strain gauge. Analysis model that is indispensable for the effective application of MSR method was established on the basis of test and measurement result.