• 제목/요약/키워드: Stress-distribution ratio

검색결과 435건 처리시간 0.032초

교차형 와이드 거더를 이용한 아파트구조의 수치해석적 연구 (A Numerical Study on the Apartment Structure Using Crossed Wide Girder)

  • 박정현
    • 한국산학기술학회논문지
    • /
    • 제8권5호
    • /
    • pp.1186-1191
    • /
    • 2007
  • 본 연구는 교차형 와이드 거더를 이용한 건축구조로 최소한의 슬래브 두께로 가능한 최장의 스팬을 확보할 수 있도록 함으로써, 층고를 높이지 않으면서 실내 공간에 자유롭고 다양한 변화를 가져올 수 있도록 하는 것이다. 즉, 본 연구는 교차형 와이드 거더를 응력분포에 따라 일정 간격으로 연속 배치함으로써, 낮은 층고에서 해당 경계 공간을 무주 공간으로 형성시킬 수 있도록 하는 것이다 본 연구의 수치적 타당성을 검토하기 위하여 3차원 횡력 설계가 가능한 프로그램인 Midas Gen을 이용하여 기존의 벽체 시스템과 교차형 Wide Girder에 의한 연성골조 시스템을 해석한 결과, 구조적으로 횡변위 및 층간변위와 바닥의 처짐 등이 기존의 벽체시스템과 비교하여 크게 불리하지 않으며, 전체적인 콘크리트 물량이 기존 벽체시스템과 비슷하며 건축적인 가변성을 확보하는데 큰 장점이 있는 것으로 나타났다.

  • PDF

한포진 219례에 대한 임상적 고찰 (Clinical Analysis on the 219 cases of Dyshidrotic Eczema)

  • 신윤진;이종우
    • 한방안이비인후피부과학회지
    • /
    • 제27권4호
    • /
    • pp.58-66
    • /
    • 2014
  • Objectives : The purpose of this study was to investigate the clinical manifestations and influences of occupation, concomitant allergic diseases, various aggravating factors and seasonal changes for patients with dyshidrotic eczema. Methods : A total of 219 patients who showed clinical manifestations of dyshidrotic eczema were included in this study. We retrospectively reviewed the clinical characteristics of all the patients. Results : 1. Among 219 patients, there were 76 male patients (34.7%), 143 female patients (65.3%), male to female ratio was 1: 1.88. The average age of the patients at admission was $31.9{\pm}9.8$ years, had a lot of 20s and 30s the distribution. 2. The average of duration of the admission to the clinic after the onset was $4.01{\pm}4.42$ years. 3. Common accompaning diseases dyshidrotic eczema patients have were allergic rhinitis(87 cases), and atopic dermatitis(55 cases), sweating(45 cases), and asthma(10 cases) in order. 4. The most commonly occurring sites for dyshidrotic eczema patients are fingers(60.3%), palm(53.4%), dorsum of hand(19.2%) and nails(5.5%) in order. 5. The most commonly contacted materials for dyshidrotic eczema patients are water(130 cases), cosmetics(40 cases) and rubber gloves(34 cases) in order. The aggravating factors of dyshidrotic eczema patients are emotional stress(110 cases), fatty food(22 cases) and alcohol(22 cases) in order. 6. The number of patients showing seasonal changes in symptoms was 111. The season with the most severe symptom was summer with 76 cases, which was statistically significant. Conclusions : This study demonstrated the various clinical characteristics of Korean patients with dyshidrotic eczema.

Comparison of long-term behavior between prestressed concrete and corrugated steel web bridges

  • Zhan, Yulin;Liu, Fang;Ma, Zhongguo John;Zhang, Zhiqiang;Duan, Zengqiang;Song, Ruinian
    • Steel and Composite Structures
    • /
    • 제30권6호
    • /
    • pp.535-550
    • /
    • 2019
  • Prestressed concrete (PC) bridges using corrugated steel webbing have emerged as one of the most promising forms of steel-concrete composite bridge. However, their long-term behavior is not well understood, especially in the case of large-span bridges. In order to study the time-dependent performance, a large three-span PC bridge with corrugated steel webbing was compared to a similar conventional PC bridge to examine their respective time-dependent characteristics. In addition, a three-dimensional finite element method with step-by-step time integration that takes into account cantilever construction procedures was used to predict long-term behaviors such as deflection, stress distribution and prestressing loss. These predictions were based upon four well-established empirical creep prediction models. PC bridges with a corrugated steel web were observed to have a better long-term performance relative to conventional PC bridges. In particular, it is noted that the pre-cambering for PC bridges with a corrugated steel web could be smaller than that of conventional PC bridges. The ratio of side-to-mid span has great influence on the long-term deformation of PC bridges with a corrugated steel web, and it is suggested that the design value should be between 0.4 and 0.6. However, the different creep prediction models still showed a weak homogeneity, thus, the further experimental research and the development of health monitoring systems are required to further progress our understanding of the long-term behavior of PC bridges with corrugated steel webbing.

트랙터 부착형 양파수확기의 작업 속도에 따른 견인 부하와 구조 안정성에 관한 실험적 연구 (Experimental Study on the Drawbar Pull and Structural Safety of an Onion Harvester Attached to a Tractor)

  • 신창섭;김준희;하유신;박두산
    • 한국기계가공학회지
    • /
    • 제18권4호
    • /
    • pp.16-25
    • /
    • 2019
  • Recently, due to labor shortages in rural areas within South Korea, the demand for upland-field machinery is growing. In addition, there is a lack of development of systematic performance testing of upland-field machinery. Thus, this study examined structural safety and drawbar pull based on soil properties, as a first step for systematic performance testing on the test bed. First, the properties of soil samples from 10 spots within the experimental site were examined. Second, the strain was measured and converted into stress on 8 points of an onion harvester that are likely to fail. More specifically, the chosen parts are linked to the power, along with the drawbar pull, using a 6-component load cell equipped between the tractor and the onion harvester. The water content of the soil ranged between 5.7%-7.5%, and the strength between 250-1171 kPa. The test soil was subsequently classified into loam soil based on the size distribution ratio of the sieved soil. The onion harvester can be considered as structurally safe based on the derived safety factor and the drawbar pull of 115-1194 kgf, according to the working speed based on agricultural fieldwork.

Prestress evaluation in continuous PSC bridges by dynamic identification

  • Breccolotti, Marco;Pozzaa, Francesco
    • Structural Monitoring and Maintenance
    • /
    • 제5권4호
    • /
    • pp.463-488
    • /
    • 2018
  • In the last decades, research efforts have been spent to investigate the effect of prestressing on the dynamic behaviour of prestressed concrete (PSC) beams. Whereas no agreement has been reached among the achievements obtained by different Researchers and among the theoretical and the experimental results for simply supported beams, very few researches have addressed this problem in continuous PSC beams. This topic is, indeed, worthy of consideration bearing in mind that many relevant bridges and viaducts in the road and railway networks have been designed and constructed with this structural scheme. In this paper the attention is, thus, focused on the dynamic features of continuous PSC bridges taking into account the effect of prestressing. This latter, in fact, contributes to the modification of the distribution of the bending stress along the beam, also by means of the secondary moments, and influences the flexural stiffness of the beam itself. The dynamic properties of a continuous, two spans bridge connected by a nonlinear spring have been extracted by solving an eigenvalue problem in different linearized configurations corresponding to different values of the prestress force. The stiffness of the nonlinear spring has been calculated considering the mechanical behaviour of the PSC beam in the uncracked and in the cracked stage. The application of the proposed methodology to several case studies indicates that the shift from the uncracked to the cracked stage due to an excessive prestress loss is clearly detectable looking at the variation of the dynamic properties of the beam. In service conditions, this shift happens for low values of the prestress losses (up to 20%) for structure with a high value of the ratio between the permanent load and the total load, as happens for instance in long span, continuous box bridges. In such conditions, the detection of the dynamic properties can provide meaningful information regarding the structural state of the PSC beam.

Numerical analysis of segmental tunnel linings - Use of the beam-spring and solid-interface methods

  • Rashiddel, Alireza;Hajihassani, Mohsen;Kharghani, Mehdi;Valizadeh, Hadi;Rahmannejad, Reza;Dias, Daniel
    • Geomechanics and Engineering
    • /
    • 제29권4호
    • /
    • pp.471-486
    • /
    • 2022
  • The effect of segmental joints is one of main importance for the segmental lining design when tunnels are excavated by a mechanized process. In this paper, segmental tunnel linings are analyzed by two numerical methods, namely the Beam-Spring Method (BSM) and the Solid-Interface Method (SIM). For this purpose, the Tehran Subway Line 6 Tunnel is considered to be the reference case. Comprehensive 2D numerical simulations are performed considering the soil's calibrated plastic hardening model (PH). Also, an advanced 3D numerical model was used to obtain the stress relaxation value. The SIM numerical model is conducted to calculate the average rotational stiffness of the longitudinal joints considering the joints bending moment distribution and joints openings. Then, based on the BSM, a sensitivity analysis was performed to investigate the influence of the ground rigidity, depth to diameter ratios, slippage between the segment and ground, segment thickness, number of segments and pattern of joints. The findings indicate that when the longitudinal joints are flexible, the soil-segment interaction effect is significant. The joint rotational stiffness effect becomes remarkable with increasing the segment thickness, segment number, and tunnel depth. The pattern of longitudinal joints, in addition to the joint stiffness ratio and number of segments, also depends on the placement of longitudinal joints of the key segment in the tunnel crown (similar to patterns B and B').

원형수직구 콘크리트라이닝 단면설계도표 개발 (Development of design charts for concrete lining in a circular shaft)

  • 신영완;김성수;김영진
    • 한국터널지하공간학회 논문집
    • /
    • 제12권2호
    • /
    • pp.165-175
    • /
    • 2010
  • 최근에 물류비 절감, 교통 편의성 개선, 지역발전 등 정치, 경제, 사회적 요구에 따라 장대 해저터널 건설의 필요성이 증가하고 있다. 또한, 도심지에 건설되는 도로 및 철도터널에서도 터널의 장대화에 따라 공사용 및 환기용 수직구의 설치가 필수적이다. 수직구 굴착 후 설치되는 콘크리트 라이닝의 설계시 결정해야할 요소는 직경, 단면두께, 소요철근량 등이다. 이러한 수직구 직경, 하중조건, 지반조건을 고려하여 최적의 라이닝 단면설계를 위해서는 많은 구조검토가 필요하다. 본 연구에서는 이러한 다양한 조건에 대하여 구조해석을 수행하여 라이닝 단면설계도표를 제시하였다. 제안된 도표를 이용하여 간편하게 규모 및 하중조건에 따른 라이닝 단면두께 및 소요철근량 산정이 가능하다.

Whole-life wind-induced deflection of insulating glass units

  • Zhiyuan Wang;Junjin Liu;Jianhui Li;Suwen Chen
    • Wind and Structures
    • /
    • 제37권4호
    • /
    • pp.289-302
    • /
    • 2023
  • Insulating glass units (IGUs) have been widely used in buildings in recent years due to their superior thermal insulation performance. However, because of the panel reciprocating motion and fatigue deterioration of sealants under long-term wind loads, many IGUs have the problem of early failure of watertight properties in real usage. This study aimed to propose a statistical method for wind-induced deflection of IGU panels during the whole life service period, for further precise analysis of the accumulated fatigue damage at the sealed part of the edge bond. By the estimation of the wind occurrence regularity based on wind pressure return period, the events of each wind speed interval during the whole life were obtained for the IGUs at 50m height in Beijing, which are in good agreement with the measured data. Also, the wind-induced deflection analysis method of IGUs based on the formula of airspace coefficient was proposed and verified as an improvement of the original stiffness distribution method with the average relative error compared to the test being about 3% or less. Combining the two methods above, the deformation of the outer and inner panes under wind loads during 30 years was precisely calculated, and the deflection and stress state at selected locations were obtained finally. The results show that the compression displacement at the secondary sealant under the maximum wind pressure is close to 0.3mm (strain 2.5%), and the IGUs are in tens of thousands of times the low amplitude tensile-compression cycle and several times to dozens of times the relatively high amplitude tensile-compression cycle environment. The approach proposed in this paper provides a basis for subsequent studies on the durability of IGUs and the wind-resistant behaviors of curtain wall structures.

Free vibration analysis of Bi-Directional Functionally Graded Beams using a simple and efficient finite element model

  • Zakaria Belabed;Abdeldjebbar Tounsi;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mohamed Bourada;Mohammed A. Al-Osta
    • Structural Engineering and Mechanics
    • /
    • 제90권3호
    • /
    • pp.233-252
    • /
    • 2024
  • This research explores a new finite element model for the free vibration analysis of bi-directional functionally graded (BDFG) beams. The model is based on an efficient higher-order shear deformation beam theory that incorporates a trigonometric warping function for both transverse shear deformation and stress to guarantee traction-free boundary conditions without the necessity of shear correction factors. The proposed two-node beam element has three degrees of freedom per node, and the inter-element continuity is retained using both C1 and C0 continuities for kinematics variables. In addition, the mechanical properties of the (BDFG) beam vary gradually and smoothly in both the in-plane and out-of-plane beam's directions according to an exponential power-law distribution. The highly elevated performance of the developed model is shown by comparing it to conceptual frameworks and solution procedures. Detailed numerical investigations are also conducted to examine the impact of boundary conditions, the bi-directional gradient indices, and the slenderness ratio on the free vibration response of BDFG beams. The suggested finite element beam model is an excellent potential tool for the design and the mechanical behavior estimation of BDFG structures.

Structural RC computer aided intelligent analysis and computational performance via experimental investigations

  • Y.C. Huang;M.D. TuMuli Lulios;Chu-Ho Chang;M. Nasir Noor;Jen-Chung Shao;Chien-Liang Chiu;Tsair-Fwu Lee;Renata Wang
    • Structural Engineering and Mechanics
    • /
    • 제90권3호
    • /
    • pp.253-261
    • /
    • 2024
  • This research explores a new finite element model for the free vibration analysis of bi-directional functionally graded (BDFG) beams. The model is based on an efficient higher-order shear deformation beam theory that incorporates a trigonometric warping function for both transverse shear deformation and stress to guarantee traction-free boundary conditions without the necessity of shear correction factors. The proposed two-node beam element has three degrees of freedom per node, and the inter-element continuity is retained using both C1 and C0 continuities for kinematics variables. In addition, the mechanical properties of the (BDFG) beam vary gradually and smoothly in both the in-plane and out-of-plane beam's directions according to an exponential power-law distribution. The highly elevated performance of the developed model is shown by comparing it to conceptual frameworks and solution procedures. Detailed numerical investigations are also conducted to examine the impact of boundary conditions, the bi-directional gradient indices, and the slenderness ratio on the free vibration response of BDFG beams. The suggested finite element beam model is an excellent potential tool for the design and the mechanical behavior estimation of BDFG structures.