• Title/Summary/Keyword: Stress-dependency

Search Result 204, Processing Time 0.024 seconds

Factors Influencing Time-dependent Deformation Behaviour of Swelling Shales (팽창성 쉐일의 시간의존적 변형거동에 영향을 미치는 제 요소)

  • 이영남
    • Geotechnical Engineering
    • /
    • v.6 no.1
    • /
    • pp.15-24
    • /
    • 1990
  • This paper describes the results of study on major factors influencing time-dependent deformation behaviour of swelling shales. The study was carried out by analyzing all the swell test results available for shales from southern Ontario. Major factors studied are (1) the presence of ambient water, (2) calcite content and (3) the applied stress. The results of the study on seven shales show that the swelling of shale is associated with the formation of cracks and the absorption of water in these cracks. The magnitude of swelling potential is related linearly to the amount of absorbed water. The presence of calcite inhibits the swelling of shales studied, reducing the swelling to zero at about 30% of calcite content. All the shales studied exhibit the stress-dependent swelling behaviour, though there Is a difference in the degree of dependency.

  • PDF

An analysis of an elastic solid incorporating a crack under the influences of surface effects in plane & anti-plane deformations

  • Kim, Chun Il
    • Interaction and multiscale mechanics
    • /
    • v.4 no.2
    • /
    • pp.123-137
    • /
    • 2011
  • We review a series of crack problems arising in the general deformations of a linearly elastic solid (Mode-I, Mode-II and Mode-III crack) and, perhaps more significantly, when the contribution of surface effects are taken into account. The surface mechanics are incorporated using the continuum based surface/interface model of Gurtin and Murdoch. We show that the deformations of an elastic solid containing a single crack can be decoupled into in-plane (Mode-I and Mode-II crack) and anti-plane (Mode-III crack) parts, even when the surface mechanics is introduced. In particular, it is shown that, in contrast to classical fracture mechanics (where surface effects are neglected), the incorporation of surface elasticity leads to the more accurate description of a finite stress at the crack tip. In addition, the corresponding stress fields exhibit strong dependency on the size of crack.

On an improved numerical method to solve the equilibrium problems of solids with bounded tensile strength that are subjected to thermal strain

  • Pimpinelli, Giovanni
    • Structural Engineering and Mechanics
    • /
    • v.15 no.4
    • /
    • pp.395-414
    • /
    • 2003
  • In this paper we recall briefly the constitutive equations for solids subjected to thermal strain taking in account the bounded tensile stress of the material. In view to solve the equilibrium problem via the finite element method using the Newton Raphson procedure, we show that the tangent elasticity tensor is semi-definite positive. Therefore, in order to obtain a convergent numerical method, the constitutive equation needs to be modified. Specifically, the dependency of the stress by the anelastic deformation is made explicit by means of a parameter ${\delta}$, varying from 0 to 1, that factorizes the elastic tensor. This parameterization, for ${\delta}$ near to 0, assures the positiveness of the tangent elasticity tensor and enforces the convergence of the numerical method. Some numerical examples are illustrated.

Functional and Rheological Properties of ${\gamma}$-Polyglutamic Acid Produced by Alkalophilic Alcaligenes sp. (호 알카리성 Alcaligenes sp.가 생산하는 ${\gamma}$-Polyglutamic Acid의 기능성 및 리올로지 특성)

  • 이신영;강태수
    • KSBB Journal
    • /
    • v.10 no.5
    • /
    • pp.547-552
    • /
    • 1995
  • Some functional and rheological properties of the ${\gamma}$-polyglutamic acid(${\gamma}$-PGA) produced from alkalophilic Alcaligenes sp. were investigated. Viscosity synergism with thickening agents, capacities for gelling, entrapig of heavy metals, and flocculability of ${\gamma}$-PGA were not observed, but the relatively good compatability with various polyvalent metallic ins, excellent absorption ability and spinability were observed. The ${\gamma}$-PGA solution showed non-Newtonian flow behavior and exhibited pseudoplastic property with a yield stress at above 1% concentration. The values of flow index for 1% solution were in the range of 0.41∼0.75 showing shear rate dependency and the value of yield stress was 2.28 Pa. The value of consistency index was 0.868 Pa$.$Sn and was exponentially dependent on concentration.

  • PDF

Tensile Strain Characteristics of Critical Current in YBCO Coated Conductors (YBCO CC테이프 임계전류의 인장변형률 특성)

  • Shin, Hyung-Seop;Kim, Ki-Hyun;Oh, Sang-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.274-275
    • /
    • 2005
  • The tensile strain dependency of critical current in YBCO coated conductors was examined at 77K and in the self magnetic field. A commercially available YBCO sample with Cu stabilizer layer was supplied. There existed a peak in the relation between the Ie and tensile strain, and the reversible variation of $I_c$ with applied tensile strain was found. In the neutral axis Ni alloy RABiTS-$Y_2O_3$/YSZ/$CeO_2$ buffered YBCO tape, the $I_c$ recovered reversibly until the applied strain reached to about 0.5%, representing that a significant residual compressive strain induced during cooling to 77 K influenced the axial strain tolerance of YBCO conductors. To investigate the strain and stress influence on the $I_c$, the stress-strain characteristics of YBCO conductors measured at 77 K were discussed.

  • PDF

Modeling of Size-Dependent Strengthening in Particle-Reinforced Aluminum Composites with Strain Gradient Plasticity (변형률 구배 소성을 고려한 입자 강화 알루미늄 복합재의 크기 종속 강화 모델링)

  • Suh, Yeong-Sung;Park, Moon-Shik;Song, Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.745-751
    • /
    • 2011
  • This study proposes finite element modeling of dislocation punching at cooling after consolidation in order to calculate the strength of particle-reinforced aluminum composites. The Taylor dislocation model combined with strain gradient plasticity around the reinforced particle is adopted to take into account the size-dependency of different volume fractions of the particle. The strain gradients were obtained from the equivalent plastic strain calculated during the cooling of the spherical unit cell, when the dislocation punching due to CTE (Coefficient of Thermal Expansion) mismatch is activated. The enhanced yield stress was observed by including the strain gradients, in an average sense, over the punched zone. The tensile strength of the SiCp/Al 356-T6 composite was predicted through the finite element analysis of an axisymmetric unit cell for various sizes and volume fractions of the particle. The predicted strengths were found to be in good agreement with the experimental data. Further, the particle-size dependency was clearly established.

Rheological Characteristics of Germinated Corn Starch (발아 옥수수 전분의 리올로지 특성)

  • Yang, Young-Kook;Lee, Shin-Young;Choi, Kook-Chi
    • Applied Biological Chemistry
    • /
    • v.29 no.4
    • /
    • pp.339-345
    • /
    • 1986
  • Rheological characteristics of starch isolated from germinated corn were investigated and compared with those of nongerminated corn starch. Flow behavior of both starches were Bingham psudoplastic. Consistency index and yield stress of germinated starch solution were lower than those of nongerminated starch solution, while flow behavior index was nearly similar. Concentration dependency of both starch solutions were similar to each other but lower temperature dependency of germinated starch solution was observed. Time dependent characteristics of both starches showed thixotropic behavior, but due to germination, germinated starch showed higher structural decay under shear than nongerminated starch and its elastic properties was weaker.

  • PDF

Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation

  • Barka, Merbouha;Benrahou, Kouider Halim;Bakora, Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.91-112
    • /
    • 2016
  • In this paper, post-buckling behavior of sandwich plates with functionally graded (FG) face sheets under uniform temperature rise loading is examined based on both sinusoidal shear deformation theory and stress function. It is supposed that the sandwich plate is in contact with an elastic foundation during deformation, which acts in both compression and tension. Thermo-elastic non-homogeneous properties of FG layers change smoothly by the variation of power law within the thickness, and temperature dependency of material constituents is considered in the formulation. In the present development, Von Karman nonlinearity and initial geometrical imperfection of sandwich plate are also taken into account. By employing Galerkin method, analytical solutions of thermal buckling and post-buckling equilibrium paths for simply supported plates are determined. Numerical examples presented in the present study discuss the effects of gradient index, sandwich plate geometry, geometrical imperfection, temperature dependency, and the elastic foundation parameters.

Physiological and Psychological Effects of Combined Forest/Thermal Therapy on Depressive Symptoms in Individuals with Alcohol and Nicotine Dependency

  • Sunhee Lee;Heeju Ro;Jungkee Choi;Youngran Chae;Soyeon Kim
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.4
    • /
    • pp.225-234
    • /
    • 2023
  • This study verified the effect of a combined forest/thermal therapy (FT/TT) program on participants with depressive symptoms and smoking or alcohol dependence. The participants included 20 people in the experimental group and 18 people in the control group. The experimental group participated in the FT/TT program for 2 nights and 3 days at the National Center for Forest Healing, in Hoengseong (National Hoengseong Supchewon), and a charcoal kiln operated by the Gangwon Charcoal Farming Association. The control group carried out their daily life for the same period. Psychological, physiological, and biochemical tests were conducted to determine the effect of the program. The results showed that there were significant improvements in stress, anxiety, depression, sleep quality, sleep satisfaction, and IL-6 levels. However, no significant difference was found in the cortisol, serotonin and melatonin levels between the experimental and control groups. Thus, the FT/TT therapy had psychological and biochemical effects on individuals with depression and nicotine or alcohol dependency. Further studies should be conducted to verify the effect of forest healing in various conditions.

Stress concentration and deflection of simply supported box girder including shear lag effect

  • Yamaguchi, Eiki;Chaisomphob, Taweep;Sa-nguanmanasak, Jaturong;Lertsima, Chartree
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.207-220
    • /
    • 2008
  • The shear lag has been studied for many years. Nevertheless, existing research gives a variety of stress concentration factors. Unlike the elementary beam theory, the application of load is not unique in reality. For example, concentrated load can be applied as point load or distributed load along the height of the web. This non-uniqueness may be a reason for the discrepancy of the stress concentration factors in the existing studies. The finite element method has been often employed for studying the effect of the shear lag. However, not many researches have taken into account the influence of the finite element mesh on the shear lag phenomenon, although stress concentration can be quite sensitive to the mesh employed in the finite element analysis. This may be another source for the discrepancy of the stress concentration factors. It also needs to be noted that much less studies seem to have been conducted for the shear lag effect on deflection while some design codes have formulas. The present study investigates the shear lag effect in a simply supported box girder by the three-dimensional finite element method using shell elements. The whole girder is modeled by shell elements, and extensive parametric study with respect to the geometry of a box girder is carried out. Not only stress concentration but also deflection is computed. The effect of the way load is applied and the dependency of finite element mesh on the shear lag are carefully treated. Based on the numerical results thus obtained, empirical formulas are proposed to compute stress concentration and deflection that includes the shear lag effect.