• 제목/요약/키워드: Stress-activated protein kinases

검색결과 64건 처리시간 0.028초

AMPK 활성화를 통한 소형화(素馨花) (Jasminum officinale L. var. grandiflorum) 열수 추출물의 HepG2 간세포 보호 활성 (Hepato-Protective Activities of Jasminum officinale L. var. grandiflorum Aqueous Extract via Activation of AMPK in HepG2 Cells)

  • 박상미;정대화;민병구;제갈경환;변성희;김재광;김상찬
    • 대한한의학방제학회지
    • /
    • 제31권4호
    • /
    • pp.231-243
    • /
    • 2023
  • Objectives : Jasminum officinale L. var. grandiflorum is used as a traditional or folk remedy in China to treat arthritis, hepatitis, duodenitis, conjunctivitis, gastritis, and diarrhea. In this study, we aimed to study the hepatocyte protective activity and molecular mechanism of Jasminum officinale L. var. grandiflorum aqueous extract (JGW) using HepG2 hepatocyte cell lines. Methods : HepG2 cells were pretreated with diverse concentrations of JGW, and then the cells were exposed to tert-butyl hydroperoxide (tBHP) for inducing oxidative stress. Hydrogen peroxide (H2O2) production, glutathione (GSH) concentration, mitochondrial membrane potential (MMP) and cell viability were measured to investigate hepato-protective effects of JGW. Phosphorylation of AMP-activated protein kinases (AMPK), acetyl coenzyme A carboxylase (ACC) and effects of compound C on cell viability were examined to observe the role of AMPK on JGW-mediated cytoprotection. Results : Pretreatment with JGW (10-300 ㎍/mL) significantly suppressed cytotoxicity induced by tBHP in a concentration dependent manner and reduced the expression of cleaved PARP and cleaved caspase-3 proteins related to apoptosis in HepG2 cells. In addition, pretreatment with JGW significantly prevented the increase in H2O2 production, GSH depletion, and lower MMP induced by tBHP. Treatment with JGW (30 minutes of incubation and concentrations of 100 and 300 ㎍/mL) increased the phosphorylation of AMPK and ACC and treatment with compound C, a chemical inhibitor of AMPK, inhibited the cytoprotective effect of JGW. Conclusions : Our results demonstrated that JGW may protect hepatocytes from oxidative stress via activation of AMPK.

쥐 해마 HT22 세포에서 글루타메이트 유도 산화 스트레스에 대한 Salacca wallichiana 추출물의 신경 보호 효과 (Neuroprotective effects of Salacca wallichiana extract against glutamate-induced oxidative stress in mouse Hippocampal HT22 cells)

  • 변지훈;홍예영;이중회;;;한송이;김재훈
    • Journal of Applied Biological Chemistry
    • /
    • 제66권
    • /
    • pp.250-257
    • /
    • 2023
  • Glutamate는 포유류의 중추신경계에 분포하는 흥분성 신경전달물질로, 기억, 인지, 그리고 학습 등에 있어서 중요한 역할을 한다. 하지만 고농도의 Glutamate는 신경세포에 독성을 유발하여 신경세포사멸을 유도함으로써 알츠하이머병, 파킨슨병, 뇌졸중 등의 신경퇴행성질환을 일으키는 것으로 알려져 있다. 본 연구에서 아열대 천연물의 항산화 활성과 신경보호 효과를 분석하였다. 11종의 아열대 추출물 중에서 Salacca wallichiana 추출물 (SE)의 라디칼 소거활성이 뛰어난 것으로 나타났다. 그리고 SE의 신경보호 효과를 조사한 결과 glutamate로 유도되는 cell death로부터 신경세포를 보호하였다. 또한 glutamate로 유도되는 apoptosis로부터 HT22 세포를 보호하는 효과는 Annexin V와 PI로 염색한 후 flow cytometry를 통해 분석되었다. 추가적으로 H2DCFDA 염색을 이용하여 SE가 glutamate로 유도되는 세포 내 활성 산소 종 (ROS)을 억제한다는 것을 확인했다. SE의 신경보호 효과는 oxidative stress로 유발되는 Mitogen-activated protein kinase (MAPK) signaling pathway를 억제함으로써 신경세포를 보호하는 것으로 나타났다. 결과적으로 SE가 신경퇴행성질환을 예방하기 위한 치료제 개발에 기여할 수 있음을 나타낸다.

B형 트리코테센 곰팡이 독소 데옥시니발레놀에 의한 인체 장관 상피세포 염증성 인터루킨 8유도에서의 PKR과 EGR-1의 상호 역할 규명 (Role of PKR and EGR-1 in Induction of Interleukin-S by Type B Trichothecene Mycotoxin Deoxynivalenol in the Human Intestinal Epithelial Cells)

  • 박성환;양현;최혜진;박영민;안순철;김관회;이수형;안정훈;정덕화;문유석
    • 생명과학회지
    • /
    • 제19권7호
    • /
    • pp.949-955
    • /
    • 2009
  • 점막 상피는 외부 인자를 감지하는 최전선의 인식부위로서 외부스트레스 자극을 하부의 반응 신호로 전달하는 주요 세포이다. 리보솜독성 반응을 유발하는 데옥시니발레놀 (DON) 및 그 관련 곰팡이 독소는 푸자륨 곰팡이 오염에 의한 식중독성 소화기 염증성 질환과의 연관성이 알려 져 있다. 본 연구의 목적은 DON이 상피세포 감지 신호 전달 분자로서 PKR과 EGR-1이 관련 되고 이들이 상피세포에서의 염증성 사이토가인 인터루킨 8의 생성에 관련 된다는 가정 하에서 연구를 수행 하였다. PKR 발현의 세포내 작용 억제는 DON에 의해 유도되는 인터루킨 8의 생성을 감소시켰다. 또한 DON에 의한 IL-8 전사 활성화는 PKR 억제에 의하여 장관 상피세포에서 감소하였다. PKR 저해제의 처리는 EGR-1 promoter 활성, mRNA, 단백질 유도 등을 감소를 유발하였으며 MAP kinase (ERK1/2, p38, JNK)는 변화가 적거나 오히려 PKR 저해제의 전처리에 의하여 항진 되었다. 결론적으로 DON에 의해 자극된 감지신호인 EGR-1은 자체적으로 또는 PKR 신호를 경유하여 인터루킨8의 생산을 항진하는데 주요한 기능을 하였다. 이를 통하여 향후 리보솜 독성 반응과 관련된 소화기 염증유발의 주요한 기전을 제공하고 있다.

Sensing the Stress: the Role of the Stress-activated p38/Hog1 MAPK Signalling Pathway in Human Pathogenic Fungus Cryptococcus neoformans

  • Bahn, Yong-Sun;Heitman, Joseph
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2007년도 International Meeting of the Microbiological Society of Korea
    • /
    • pp.120-122
    • /
    • 2007
  • All living organisms use numerous signal-transduction pathways to sense and respond to their environments and thereby survive and proliferate in a range of biological niches. Molecular dissection of these signalling networks has increased our understanding of these communication processes and provides a platform for therapeutic intervention when these pathways malfunction in disease states, including infection. Owing to the expanding availability of sequenced genomes, a wealth of genetic and molecular tools and the conservation of signalling networks, members of the fungal kingdom serve as excellent model systems for more complex, multicellular organisms. Here, we employed Cryptococcus neoformans as a model system to understand how fungal-signalling circuits operate at the molecular level to sense and respond to a plethora of environmental stresses, including osmoticshock, UV, high temperature, oxidative stress and toxic drugs/metabolites. The stress-activated p38/Hog1 MAPK pathway is structurally conserved in many organisms as diverse as yeast and mammals, but its regulation is uniquely specialized in a majority of clinical Cryptococcus neoformans serotype A and D strains to control differentiation and virulence factor regulation. C. neoformans Hog1 MAPK is controlled by Pbs2 MAPK kinase (MAPKK). The Pbs2-Hog1 MAPK cascade is controlled by the fungal "two-component" system that is composed of a response regulator, Ssk1, and multiple sensor kinases, including two-component.like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. We also identified and characterized the Ssk2 MAPKKK upstream of the MAPKK Pbs2 and the MAPK Hog1 in C. neoformans. The SSK2 gene was identified as a potential component responsible for differential Hog1 regulation between the serotype D sibling f1 strains B3501 and B3502 through comparative analysis of their meiotic map with the meiotic segregation of Hog1-dependent sensitivity to the fungicide fludioxonil. Ssk2 is the only polymorphic component in the Hog1 MAPK module, including two coding sequence changes between the SSK2 alleles in B3501 and B3502 strains. To further support this finding, the SSK2 allele exchange completely swapped Hog1-related phenotypes between B3501 and B3502 strains. In the serotype A strain H99, disruption of the SSK2 gene dramatically enhanced capsule biosynthesis and mating efficiency, similar to pbs2 and hog1 mutations. Furthermore, ssk2, pbs2, and hog1 mutants are all hypersensitive to a variety of stresses and completely resistant to fludioxonil. Taken together, these findings indicate that Ssk2 is the critical interface protein connecting the two-component system and the Pbs2-Hog1 pathway in C. neoformans.

  • PDF

Inhibition of MMP-2 and MMP-9 Activities by Limonium tetragonum Extract

  • Bae, Min-Joo;Karadeniz, Fatih;Lee, Seul-Gi;Seo, Youngwan;Kong, Chang-Suk
    • Preventive Nutrition and Food Science
    • /
    • 제21권1호
    • /
    • pp.38-43
    • /
    • 2016
  • Matrix metalloproteinases (MMPs) are crucial extracellular matrices degrading enzymes that take important roles in metastasis of cancer progression as well as other significant conditions such as oxidative stress and hepatic fibrosis. Natural products are on the rise for their potential to provide remarkable health benefits. In this context, halophytes have been of interest in the nutraceutical field with reported instances of isolation of bioactive compounds. In this study, Limonium tetragonum, an edible halophyte, was studied for its ability to inhibit MMP-2 and -9 using HT1080 fibrosarcoma cells. Results showed that L. tetragonum extract was able to inhibit the enzymatic activity and mRNA expression of MMP-2 and -9 according to gelatin zymography and RT-PCR assays, respectively, but it was not able to significantly change the MMP pathway related factors such as tissue inhibitors of metalloproteinases. Also, Mitogen-activated protein kinases pathway-related protein levels and their phosphorylation were assayed. While the phosphorylated p38 levels were decreased, extracellular signal-regulated kinase and c-Jun N-terminal kinase were not affected by L. tetragonum treatment. In conclusion, it was suggested that L. tetragonum contains substances acting as MMP inhibitors on enzymatic activity rather than intracellular pathway intervention, which could be useful for further utilization of L. tetragonum as a source for anti-MMP agents.

The Treatment Effect of Ulcerative Colitis of Supercritical Heat-Treated Radish Extracts

  • Kim, Hyun-Kyoung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권2호
    • /
    • pp.145-155
    • /
    • 2021
  • With the recent rapid improvement in the standards of life and westernization of dietary lifestyles, the consumption of high-calorie diets such as high-fat and high-protein red meat and instant foods has increased, while less vegetables containing dietary fiber are consumed. In addition to that, stress, erroneous dietary behaviors, and contaminated environments are linked to the risk of developing ulcerative colitis, which is on the rise. Another cause of ulcerative colitis is that involve laxative abuse, including repeated, frequent use of laxatives, and include such conditions as deteriorated bowel function, irritable bowel syndrome, diarrhea, intestinal inflammation, etc. The present study aimed to investigate the comparative evaluation of pharmacological efficacy between sulfasalazine alone and combination with herbal medicine on dextran sodium sulfate (DSS)-induced UC in mice. Balb/c mice received 5% DSS in drinking water for 7 days to induce colitis. Animals were divided into five groups (n = 9): group I-normal group, group II-DSS control group, group III-DSS + sulfasalazine (30 mg/kg), group IV-DSS + sulfasalazine (60 mg/kg), group V-DSS + sulfasalazine (30 mg/kg) + Radish Extract mixture (30 mg /kg) (SRE). DSS-treated mice developed symptoms similar to those of human UC, such as severe bloody diarrhea and weight loss. SRE supplementation, as well as sulfasalazine, suppressed colonic length and mucosal inflammatory infiltration. In addition, SRE treatment significantly reduced the expression of pro-inflammatory signaling molecules through suppression both mitogen-activated protein kinases (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways, and prevented the apoptosis of colon. Moreover, SRE administration significantly led to the up-regulation of antioxidant enzyme including SOD and Catalase. This is the first report that Radish extract mixture combined with sulfasalazine protects against experimental UC via the inhibition of both inflammation and apoptosis, very similar to the standard-of-care sulfasalazine.

Benzoylaconine improves mitochondrial function in oxygen-glucose deprivation and reperfusion-induced cardiomyocyte injury by activation of the AMPK/PGC-1 axis

  • Chen, Leijie;Yan, Laixing;Zhang, Weiwei
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권5호
    • /
    • pp.325-333
    • /
    • 2022
  • Heart failure (HF) has become one of the severe public health problems. The detailed role of mitochondrial function in HF was still unclear. Benzoylaconine (BAC) is a traditional Chinese medicine, but its role in HF still needs to be explored. In this study, oxygen-glucose deprivation and reperfusion (OGD/R) was executed to mimic the injury of H9C2 cells in HF. The viability of H9C2 cells was assessed via MTT assay. OGD/R treatment markedly decreased the viability of H9C2 cells, but BAC treatment evidently increased the viability of OGD/R-treated H9C2 cells. The apoptosis of H9C2 was enhanced by OGD/R treatment but suppressed by BAC treatment. The mitochondrial membrane potential was evaluated via JC-1 assay. BAC improved the mitochondrial function and suppressed oxidative stress in OGD/R-treated H9C2 cells. Moreover, Western blot analysis revealed that the protein expression of p-AMPK and PGC-1α were reduced in OGD/R-treated H9C2 cells, which was reversed by BAC. Rescue assays indicated that AMPK attenuation reversed the BAC-mediated protective effect on OGD/R-treated cardiomyocytes. Moreover, BAC alleviated myocardial injury in vivo. In a word, BAC modulated the mitochondrial function in OGD/R-induced cardiomyocyte injury by activation of the AMPK/PGC-1 axis. The findings might provide support for the application of BAC in the treatment of HF.

Tat-indoleamine 2,3-dioxygenase 1 elicits neuroprotective effects on ischemic injury

  • Park, Jung Hwan;Kim, Dae Won;Shin, Min Jea;Park, Jinseu;Han, Kyu Hyung;Lee, Keun Wook;Park, Jong Kook;Choi, Yeon Joo;Yeo, Hyeon Ji;Yeo, Eun Ji;Sohn, Eun Jeong;Kim, Hyoung-Chun;Shin, Eun-Joo;Cho, Sung-Woo;Kim, Duk-Soo;Cho, Yong-Jun;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • 제53권11호
    • /
    • pp.582-587
    • /
    • 2020
  • It is well known that oxidative stress participates in neuronal cell death caused production of reactive oxygen species (ROS). The increased ROS is a major contributor to the development of ischemic injury. Indoleamine 2,3-dioxygenase 1 (IDO-1) is involved in the kynurenine pathway in tryptophan metabolism and plays a role as an anti-oxidant. However, whether IDO-1 would inhibit hippocampal cell death is poorly known. Therefore, we explored the effects of cell permeable Tat-IDO-1 protein against oxidative stress-induced HT-22 cells and in a cerebral ischemia/reperfusion injury model. Transduced Tat-IDO-1 reduced cell death, ROS production, and DNA fragmentation and inhibited mitogen-activated protein kinases (MAPKs) activation in H2O2 exposed HT-22 cells. In the cerebral ischemia/reperfusion injury model, Tat-IDO-1 transduced into the brain and passing by means of the blood-brain barrier (BBB) significantly prevented hippocampal neuronal cell death. These results suggest that Tat-IDO-1 may present an alternative strategy to improve from the ischemic injury.

RAW 264.7 세포에서 Lycopene의 MAPK/Nrf2/HO-1 신호 전달 체계를 통한 항산화 효과 (Anti-oxidative Activity of Lycopene Via the Induction of HO-1 Expression by MAPK/Nrf2 Signaling Pathway in RAW 264.7 Cells)

  • 박충무;안현;윤현서
    • 대한통합의학회지
    • /
    • 제12권1호
    • /
    • pp.1-10
    • /
    • 2024
  • Purpose: Lycopene is abundantly contained in Tomatoes and is known for diverse biological activities such as antioxidant, anti-inflammatory, and anticancer effects. In this study, the antioxidative potential of lycopene was investigated through the induction of hemeoxygenase (HO)-1 by nuclear factor-erythroid 2 p45-related factor2 (Nrf2) and upstream signaling molecules, mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Aktin RAW 264.7 cells. Methods: The antioxidative potential of lycopene against oxidative stress and its molecular mechanisms were determined by the cell viability assay, intracellular reactive oxygen species (ROS) formation assay, and Western blot analysis in RAW 264.7 cells. Results: Lycopene treatment significantly attenuated tert-butyl hydroperoxide (t-BHP) induced intracellular ROS formation in a dose-dependent manner without any cytotoxicity. In addition, 50 µM of lycopene for 6 h treatment induced potent HO-1 expression and its transcription factor, Nrf2. MAPK and PI3K/Aktwere also analyzed due to their critical roles in the regulation of cellular redox homeostasis against oxidative damage. As a result, phosphorylation of extracellular regulated kinase (ERK) was significantly induced by lycopene treatment while the activated status of c-Jun NH2-terminal kinase (JNK), p38, and Akt, were not given any effect. To confirm the antioxidative mechanism of HO-1 mediated by ERK activation, each selective inhibitor was employed in a protection assay, in which oxidative damage occurred by t-BHP. Lycopene, SnPP, and CoPP treatments reflected accelerated HO-1 expression could be a protective role against oxidative damage-initiated cell death. A selective inhibitor for ERK significantly inhibited the lycopene-induced cytoprotective effect but selective inhibitors for other signaling molecules did not attenuate the rate of t-BHP-induced cell death. Conclusion: In conclusion, lycopene potently scavenged intracellular ROS formation and enhanced the HO-1 mediated antioxidative potential through the modulation of Nrf2, MAPK signaling pathway in RAW 264.7 cells.

도파민 세포에서 Paraquat에 의한 헴산화효소-1의 유도 (Paraquat Induced Heme Oxygenase-1 in Dopaminergic Cells)

  • 전홍성
    • KSBB Journal
    • /
    • 제20권1호
    • /
    • pp.21-25
    • /
    • 2005
  • 흔하게 사용되어온 제초제인 paraquat는 파킨슨병의 원인이 될 수 있는 유력한 위험 요소이다. 헴산화효소-1(HO-1)은 산화적 스트레스와 소포체 스트레스의 marker인데, 여러 가지 자극에 의해 heme을 분해하여 biliverdin, 일산화탄소, 철 성분으로 전환시킨다 본 연구에서는 뇌의 흑색질 유래의 도파민 세포주 SN4741에서 paraquat가 시간별, 농도별로 HO-1을 활성화시키는 기작을 조사하였다. HO-1이 Paraquat에 의해 활성화되는 것은 주로 유전자 전사 수준에서 조절되었다. HO-1 유전자의 promoter와 5' enhancer인 El, E2를 결실시킨 실험에서, E2 enhancer가 도파민 세포에서 paraquat에 의한 HO-1 유전자 발현을 유도하는 핵심 부위로 판명되었다 E2 enhancer 부위를 돌연변이 시킨 실험 결과는 전사인자 활성 단백질-1 (AP-1) 결합부위를 통해 HO-1 발현이 유도됨을 밝히게 되었다. 또한, 도파민 세포에서 HO-1 유전자 발현의 조절과 신호전달 과정의 관계를 조사하기 위해 MAP kinase들의 특이적 저해제를 처리하고 paraquat로 자극을 준 결과, JNK 저해제인 SP600125가 가장 현저하게 paraquat에 의한 HO-1 발현을 억제하였다. 결론적으로, 도파민 세포에서 paraquat가 HO-1을 유도하는 데는 E2 enhancer가 중요하게 작용하고, AP-1과 JNK 경로를 통해 HO-1 발현이 조절된다는 사실을 처음으로 밝히게 되었다.