• 제목/요약/키워드: Stress-Strength Analysis

검색결과 2,230건 처리시간 0.037초

Effect of Confined High-Strength Concrete Columns

  • Van, Kyung-Oh;Yun, Hyun-Do;Hwang, Sun-Kyoung
    • 콘크리트학회논문집
    • /
    • 제15권5호
    • /
    • pp.747-758
    • /
    • 2003
  • The moment-curvature envelope describes the changes in the flexural capacity with deformation during a nonlinear analysis. Therefore, the moment-curvature analysis for reinforced concrete columns, indicating the available flexural strength and ductility, can be conducted providing the stress-strain relation for the concrete and steel are known. The moments and curvatures associated with increasing flexural deformations of the column may be computed for various column axial loads by incrementing the curvature and satisfying the requirements of strain compatibility and equilibrium of forces. Clearly it is important to have accurate information concerning the complete stress-strain curve of confined high-strength concrete in order to conduct reliable moment-curvature analysis that assesses the ductility available from high-strength concrete columns. However, it is not easy to explicitly characterize the mechanical behavior of confined high-strength concrete because of various parameter values, such as the confinement type of rectilinear ties, the compressive strength of concrete, the volumetric ratic and strength of rectangular ties. So a stress-strain model is developed which can simulate complete inelastic moment-curvature relations of high-strength concrete columns.

기존의 액상화 평가기법 밀 그 적용성에 관한 연구 (A Study on the Conventional Liquefaction Analysis and Application to Korean Liquefaction Hazard Zones)

  • 박인준;신윤섭;최재순;김수일
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.431-438
    • /
    • 1999
  • An assessment of liquefaction potential is made in principle by comparing the shear stress induced by earthquake to the liquefaction strength of the soil. In this study, a modified method based on Seed and Idriss theory is developed for evaluating liquefaction potential. The shear stress in the ground can be evaluated with seismic response analysis and the liquefaction strength of the soil can be investigated by using cyclic triaxial tests. The cyclic triaxial tests are conducted in two different conditions in order to investigate the factors affecting liquefaction strength such as cyclic shear stress amplitude and relative density. And performance of the modified method in practical examples is demonstrated by applying it to liquefaction analysis of artificial zones with dimensions and material properties similar to those in a typical field. From the result, the modified method for assessing liquefaction potential can successfully evaluate the safety factor under moderate magnitude(M=6.5) of earthquake.

  • PDF

몬테카를로 시뮬레이션을 이용한 증기 터빈블레이드재의 확률론적 해석 (A Stochastic Analysis in Steam Turbine Blade Steel Using Monte Carlo Simulation)

  • 김철수;정화영;강명수;김정규
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2421-2428
    • /
    • 2002
  • In this study, the failure probability of the degraded LP turbine blade steel was performed using the Monte Carlo simulation to apply variation of applied stress and strength. For this purpose, applied stress under the service condition of steady state was obtained by theoretical stress analysis and the maximum Von-Mises stress was 219MPa. The fatigue strength under rotating-bending load was evaluated by the staircase method. Furthermore, 3-parameter Weibull distribution was found to be most appropriate among assumed distributions when the probabilistic distributions of tensile and fatigue strength were determined by the proposed analysis. The failure probability with various loading conditions was derived from the strength-stress interference model and the characteristic factor of safety was also estimated.

Multi-axial strength criterion of lightweight aggregate (LWA) concrete under the Unified Twin-shear strength theory

  • Wang, Li-Cheng
    • Structural Engineering and Mechanics
    • /
    • 제41권4호
    • /
    • pp.495-508
    • /
    • 2012
  • The strength theory of concrete is significant to structure design and nonlinear finite element analysis of concrete structures because concrete utilized in engineering is usually subject to the action of multi-axial stress. Experimental results have revealed that lightweight aggregate (LWA) concrete exhibits plastic flow plateau under high compressive stress and most of the lightweight aggregates are crushed at this stage. For the purpose of safety, therefore, in the practical application the strength of LWA concrete at the plastic flow plateau stage should be regarded as the ultimate strength under multi-axial compressive stress state. With consideration of the strength criterion, the ultimate strength surface of LWA concrete under multi-axial stress intersects with the hydrostatic stress axis at two different points, which is completely different from that of the normal weight concrete as that the ultimate strength surface is open-ended. As a result, the strength criteria aimed at normal weight concrete do not fit LWA concrete. In the present paper, a multi-axial strength criterion for LWA concrete is proposed based on the Unified Twin-Shear Strength (UTSS) theory developed by Prof Yu (Yu et al. 1992), which takes into account the above strength characteristics of LWA under high compressive stress level. In this strength criterion model, the tensile and compressive meridians as well as the ultimate strength envelopes in deviatoric plane under different hydrostatic stress are established just in terms of a few characteristic stress states, i.e., the uniaxial tensile strength $f_t$, the uniaxial compressive strength $f_c$, and the equibiaxial compressive $f_{bc}$. The developed model was confirmed to agree well with experimental data under different stress ratios of LWA concrete.

십자형 용접부 피로강도 산정을 위한 국부응력법의 비교연구 (A Comparative Study of the Fatigue Strength on Cruciform Joints by Local Stress Methods)

  • 양박달치;안정현
    • 대한조선학회논문집
    • /
    • 제47권4호
    • /
    • pp.573-579
    • /
    • 2010
  • The notch effects on the fatigue strength of welded joints are both stress concentration and fatigue strength reduction. In the notch stress approach, the notch effects are usually approximated by introducing weld-bead parameters for the local detailed weld joints. In this paper, well-known notch stress approaches - critical distance method, area method and fictitious rounding method are presented for the fatigue strength of cruciform joints. The estimated results of the present methods are applied to the experiments performed in this study and reported in the references. The results of the application show that the fatigue-life scatterness of the experimental data expressed in the nominal stress is significantly reduced by introducing the effective fatigue stress of the present study.

용접 잔류음력을 고려한 강구조물의 피로강도평가 (A Numerical Estimation of Fatigue Strength of Welded Steel Structures with Residual Stresses)

  • 정흥진;유병찬
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.265-270
    • /
    • 2007
  • According to previous research, welding-induced residual stresses in steel structures can significantly affect the fatigue behaviour. Usually, high tensile residual stresses up to the yield strength are conservatively assumed at the weld toes. This conservative assumption can result in misleading fatigue assessments. Thee welding-induced residual stresses need be known in advance for a reliable fatigue assessment, which becomes possible to an increasing extent by numerical welding simulation. In this study, a fatigue Analysis technique for steel structures with welding induced residual stress is presented. First, We calculate the history of temperature according with welding process. Secondly, residual stress with a welding thermal history was evaluated by non-linear thermal stress analysis and lastly, fatigue strength is estimated with modified Goodman equation which can consider the effect of mean stress level.

  • PDF

로워암 리브 두께에 따른 구조 강도 해석 (Structural Strength Analysis due to Rib Thickness of Lower Arm)

  • 조재웅;한문식
    • 한국자동차공학회논문집
    • /
    • 제22권1호
    • /
    • pp.126-134
    • /
    • 2014
  • This study investigates the structural strength analysis due to rib thickness of lower arm. At structural analysis, model 1 has the most deformation by comparing three models. As most equivalent stress is shown at the part connected with wheel knuckle, the strength becomes weaker in cases of three models. At fatigue analysis, model 1 becomes most unstabilized among three models. Model 3 has most fatigue life and the next model is model 2. The range of maximum harmonic response frequencies becomes 140 to 175Hz in cases of three models. Because the critical frequency at model 3 becomes highest among three models but the stress exceeds yield stress, model 3 becomes most unstabilized at vibration durability. As models 1 and 2 has less than yield stress, these models become stabilized. Model 2 becomes most favorable by comparing three models at structural, fatigue and vibration analyses. This study result can be effectively utilized with the design of lower arm by investigating prevention against damage and its strength durability.

잔류응력을 고려한 IB형 spot 용접이음재의 피로강도 평가 (Fatigue Strength Evaluation of IB-Type Spot Welded Lap Joint considered Residual Stress)

  • 손일선
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 추계학술대회 논문집
    • /
    • pp.127-131
    • /
    • 1997
  • In systematic and orderly estimation of fatigue strength of the spot welded lap joints, because the influence of residual stress of fatigue crach initiation and growth is not negligible, there need to estimate fatigue strength considered residual stress at near spot weld part of the lap joints. Therefore, in this thesis, peformed stress distribution and residual stress analysis at near the spot weld part by F.E.M and X-ray diffraction method, and obtained the maximum principal stress considered residual stress at nugget edge by superposing residual stress at nugget edge by superposing their results. From the results obtained above, we could find that fatigue strength of the IB-type spot welded lap joints was rearranged by the maximum principal stress considered residual stress at nugget edge and was entirely low about 13 percents compare with that neglected residual stress.

  • PDF

장애인가족의 스트레스가 가족적응에 미치는 영향 : 가족건강성의 매개효과를 중심으로 (Influence of Stress on Family Adaptation of Disabled Family : Focused on the Mediation Effect of Family Strength)

  • 심미영;김재림;안성아
    • 한국콘텐츠학회논문지
    • /
    • 제14권4호
    • /
    • pp.267-276
    • /
    • 2014
  • 본 연구는 장애인가족을 대상으로 장애인가족이 경험하는 가족스트레스가 가족적응에 미치는 영향을 파악하고, 가족스트레스와 가족적응의 영향관계에서 가족건강성의 매개효과를 검증하는 것이다. 분석결과, 장애인가족이 경험하는 가족스트레스는 가족적응에 부적인 영향을 미치는 것으로 나타났으며, 가족건강성을 투입한 매개효과의 검증결과, 가족스트레스가 가족건강성을 매개로 가족적응에 부적인 영향을 미치는 완전 매개효과가 발견되었다. 이를 토대로 가족스트레스 관리 및 가족건강성 증진을 통한 장애인 가족적응을 위한 제언을 제시하였다.

복합알람밸브의 강도안전성에 관한 유한요소해석 (Finite Element Analysis on the Strength Safety of a Hybrid Alarm Valve)

  • 김청균;김태환
    • 한국생산제조학회지
    • /
    • 제21권2호
    • /
    • pp.221-224
    • /
    • 2012
  • This paper presents the strength safety of a hybrid alarm valve by a finite element analysis. The stress and strain of a conventional hybrid alarm valve are calculated for the given maximum test pressure of 2MPa. Especially, the FEM computed maximum stress of a conventional hybrid valve is only 18.6% of yield strength, 370MPa. This means that the conventional valve is designed with a thick thickness of a valve structure. But, new hybrid alarm valve model, which is developed by optimized design method in this study, shows more low level of 43% in maximum stress and strain compared with that of a conventional hybrid valve. These results may recommend the reduction of a weight and a dimension for an optimized hybrid alarm valve.