• Title/Summary/Keyword: Stress-Life Curve

Search Result 207, Processing Time 0.027 seconds

Fatigue Life Predictions for Variable Load Histories (변동하중하의 피로수명예측)

  • 하재선;송지호;이시중
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.760-780
    • /
    • 1988
  • Using the fatigue test results obtained in the SAE Fatigue Cumulative Damage Test Program, prediction methods of fatigue crack initiation life for notched members undergoing random loaming histories were discussed in detail. Conventional fatigue life predictions based on so-called modified Miner's rule were found to be apt to give nonconservative estimate, due to lack of sufficient consideration for stress-interaction effect. A modified .epsilon.-N curve concept was proposed to account for the stress-interaction effect. The predicted fatigue life based on the modified .epsilon.-N curve concept was in good agreement with the experimental results of SAE Test Program. Specifically for the cases when fatigue data was not available at hand, was proposed a procedure to give conservative estimate of fatigue life.

A study on the Fatigue Life Prediction Method of the Spot-welded Lap Joint (점용접이음재의 피로수명 예측기법에 관한 연구)

  • 손일선;배동호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.110-118
    • /
    • 2000
  • For reasonable fatigue design and estimation of fatigue durability considered fatigue strength and stiffness of the automotive body structure, many fatigue data must be insured according to the shapes, materials, and welding conditions of the spot welded lap joints. However, because it is actually difficult problem, there is need to establish a new method to be able to predict its fatigue life without any additional fatigue tests. Therefore, In order to improve such problems, in this study, the maximum stress function presenting the $\delta\sigma_{1max}―\delta P$ relation was defined form the relation between $\delta\sigma_{1max}-N_f$ and ${\delta}P-N_f$. By using the fatigue data on the IB type spot-welded lap joints previously obtained from the fatigue test results, fatigue life of the spot-welded lap joint previously obtained from the fatigue test results, fatigue life of the spot-welded lap joint having a certain dimension was tried to predict without any additional fatigue tests. And, its result was verified by ${\delta}P-$N_f$ curves. Obtained conclusion are as follows, 1) a maximum stress function considered the relation of the maximum principal stress, fatigue load, and the effects of geometrical factors of the IB type spot-welded lap joint was suggested. 2) the fatigue life predicted by the maximum principal stress function and the relation of $\delta\sigma_{1max}-N_f$ was well agreed with the fatigue life obtained through the actual fatigue test result. 3) the fatigue life of the IB type spot-welded lap joint having a certain dimension is able to be predicted without any additional fatigue tests from the fatigue life prediction method by the maximum principal stress function.

  • PDF

Strain energy-based fatigue life prediction under variable amplitude loadings

  • Zhu, Shun-Peng;Yue, Peng;Correia, Jose;Blason, Sergio;De Jesus, Abilio;Wang, Qingyuan
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.151-160
    • /
    • 2018
  • With the aim to evaluate the fatigue damage accumulation and predict the residual life of engineering components under variable amplitude loadings, this paper proposed a new strain energy-based damage accumulation model by considering both effects of mean stress and load interaction on fatigue life in a low cycle fatigue (LCF) regime. Moreover, an integrated procedure is elaborated for facilitating its application based on S-N curve and loading conditions. Eight experimental datasets of aluminum alloys and steels are utilized for model validation and comparison. Through comparing experimental results with model predictions by the proposed, Miner's rule, damaged stress model (DSM) and damaged energy model (DEM), results show that the proposed one provides more accurate predictions than others, which can be extended for further application under multi-level stress loadings.

A Study on Fatigue Life Prediction of Welded Joints Through Fatigue Test and Crack Propagation Analysis (피로실험 및 균열진전 해석을 통한 용접부의 피로수명 예측에 관한 연구)

  • Y.C. Jeon;Y.I. Kim;J.K. Kang;J.M. Han
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.93-106
    • /
    • 2001
  • T-joint and hopper knuckle joint models are typical welded joints in ship structure, which are very susceptible to fatigue damage under service condition. Fatigue test and fracture mechanical analysis were performed on these joints to find out characteristics of fatigue behavior. Unified S-N curve was developed from the test results of these two types of joint using hot spot stress concept, and also propagation life was also estimated using Paris' crack propagation law. Residual stress effect on propagation life was considered in calculating propagation life, as was done with thermo-elasto-plastic FE analysis and residual stress intensity factor calculation. Fatigue life of similar kinds of welded joint could be predicted with this unified S-N curve and fracture mechanical analysis technique.

  • PDF

Prediction of the Rhelolgical of Soybean Curd during Storage by using WLF equation (저장중의 두부에 WLF식을 이용한 물성 변화 예측에 관하여)

  • Jang, Won-Young;Kim, Byung-Yong;Kim, Myoung-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.193-198
    • /
    • 1995
  • The changes in the rheological properties of soybean curd upon the various storage temperatures ($5{\sim}25^{\circ}C$) were measured by the stress-relaxation test and analysed by time-temperature superposition theory. As the storage temperature was lower, higher initial and equilibrium stress of soybean curd were observed. When the stress-relaxation curves were moved horizontally by using the shift-factor on the basis of reference temperature, the master curve was obtained. By applying master curve and shift-factor to the WLF (Williams-Landel-Ferry) equation, activation energy (30kcal/mol) was calculated and storage time at the specific temperature could be predicted, suggesting the equivalent shelf-life of soybean curd texture.

  • PDF

MEAN LOAD EFFECT ON FATIGUE OF WELDED JOINTS USING STRUCTURAL STRESS AND FRACTURE MECHANICS APPROACH

  • Kim, Jong-Sung;Kim, Cheol;Jin, Tae-Eun;Dong, P.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.277-284
    • /
    • 2006
  • In order to ensure the structural integrity of nuclear welded structures during design life, the fatigue life has to be evaluated by fatigue analysis procedures presented in technical codes such as ASME B&PV Code Section III. However, existing fatigue analysis procedures do not explicitly consider the presence of welded joints. A new fatigue analysis procedure based on a structural stress/fracture mechanics approach has been recently developed in order to reduce conservatism by erasing uncertainty in the analysis procedure. A recent review of fatigue crack growth data under various mean loading conditions using the structural stress/fracture mechanics approach, does not consider the mean loading effect, revealed some significant discrepancies in fatigue crack growth curves according to the mean loading conditions. In this paper, we propose the use of the stress intensity factor range ${\Delta}K$ characterized with loading ratio R effects in terms of the structural stress. We demonstrate the effectiveness in characterizing fatigue crack growth and S-N behavior using the well-known data. It was identified that the S-N data under high mean loading could be consolidated in a master S-N curve for welded joints.

A Study on Life Estimation of a Forging Die (단조 금형의 수명 평가에 관한 연구)

  • Choi, C.H.;Kim, Y.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.479-487
    • /
    • 2007
  • Die life is generally estimated taking failure life and wear amount into consideration. In this study, the forging die life was investigated considering both of these two factors. The fatigue life prediction for the die was performed using the stress-life method, i.e. Goodman's and Gerber's equations. The Archard's wear model was used in the wear life simulation. These die life prediction techniques were applied to the die used in the forging process of the socket ball joint of a transportation system. A rigid-plastic finite element analysis for the die forging process of the socket ball was carried out and also the elastic stress analysis for the die set was performed in order to get basic data for the die fatigue life prediction. The wear volume of the die was measured using a 3-dimensional measurement apparatus. The simulation results were relatively in good agreement with the experimental measurements.

Basic Characteristics of Micro-Fatigue-Cracks on the Unnotched Smooth Specimens (平활材表面 의 微小피勞균열에 관한 基礎的 特性)

  • 서창민;북천영부;결성양치
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.1
    • /
    • pp.28-35
    • /
    • 1983
  • Quantitative analysis have been carried out on the micro-cracks on the surface and into the depth of unnotched smooth mild steel specimen under cyclic stains by rotating bending fatigue tests. Some of the results are; (1) Cracks initiate at the early stage of fatigue life N$_{I}$/ N$_{f}$=10 to 20%, and propagate during the rest of fatigue life. (2) Coalescence of highly crowded small fatigue cracks of random distribution seems to induce the final fracture at higher stress level. (3) The curves of crack initiation and the equal crack length on the graph of stress versus number of cycles are parallel to the S-N curve. (3) The curves of crack initiation and the equal crack length on the graph of stress versus number of cycles are parallel to the S-N curve. (4) The distributions of micro-surface crack length and depth show the composite Weibull distributions which are approximated to two straight lines separated by the value of transient region between stage I and stage II crack.k.k.

Probabilistic Fracture Mechanics Analysis of Reactor Vessel for Pressurized Thermal Shock - The Effect of Residual Stress and Fracture Toughness - (가압열충격에 대한 원자로 용기의 확률론적 파괴역학해석 - 잔류응력 및 파괴인성곡선의 영향 -)

  • Jung, Sung-Gyu;Jin, Tae-Eun;Jhung, Myung-Jo;Choi, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.987-996
    • /
    • 2003
  • The structural integrity of the reactor vessel with the approaching end of life must be assured for pressurized thermal shock. The regulation specifies the screening criteria for this and requires that specific analysis be performed for the reactor vessel which is anticipated to exceed the screening criteria at the end of plant life. In case the screening criteria is exceeded by the deterministic analysis, probabilistic analysis must be performed to show that failure probability Is within the limit. In this study, probabilistic fracture mechanics analysis of the reactor vessel for pressurized thermal shock is performed and the effects of residual stress and master curve on the failure probability are investigated.

A Study on the Stress Concentration Factor and Fatigue Strength for T-Tubular Joints by FEM (유한요소법에 의한 튜블라 이음부의 응력집중계수 및 피로강도 해석)

  • 엄동석;강성원;하우일
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.141-150
    • /
    • 1994
  • In designing, the strength of tubular joint has been an important problem for integrity of steel structures in which many tubular members are used. This paper presents the results of FEM analysis on stress concentration and fatigue crack initiation life for two types of tubular joints. One is circular and rectangular T type joints which consist of circular brace and rectangular chord. Another is circular and circular T type joints which consist of circular brace and circular chord. FEM analyses were performed under the axial load and in-plane bending moment. The fatigue crack initiation life can be estimated by using $\varepsilon$-N curve and by applying the Palmgren-Miner linear damage rule. According to the results, the stress concentration factor(SCF) of circular and rectangular joints is higher than that of circular and circular joints. The fatigue crack initiation lives of circular-circular joints and circular-rectangular joints were calculated.

  • PDF