• Title/Summary/Keyword: Stress- ratio

Search Result 4,038, Processing Time 0.033 seconds

A Study on the Stress Evaluation Equations for Steel Circular Column-to- Box Beam Connections (강재 상자형보-원형기둥 접합부의 응력평가식에 관한 연구)

  • Park, Yong Myung;Chang, Won Je;Hwang, Won Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.505-517
    • /
    • 2004
  • This paper presented equations on the stress evaluation of steel frame pier connections that were composed of a box beam and a circular column. The existing equations, which transformed the circular column into an equivalent box column had some problems; they underestimated a shear lag stress as the joint angle decreased, and overestimated a shear stress as the joint angel increased. Therefore, FE analyses were performed with various parameters, such as joint angle(${\alpha}$), span length-width ratio(L/B), and circular column-to-box beam stiffness ratio(${\alpha}$), and new equations on stress evaluation were proposed based on FE analyses. Furthermore, material and geometric nonlinear analyses were performed to estimate ultimate strength and to confirm the validity of the proposed equations.

The Effect of Laser Acupuncture at $HT_7$(Sinmun) for Mental Stress on Short-term Analysis of Heart Rate Variability (신문혈(神門穴) 레이저침 시술이 정신적 스트레스를 가한 성인의 심박변이도에 미치는 영향)

  • Jang, Jin-Young;Cho, Seong-Yeun;Kim, So-Jung;Kim, Yong-Suk;Nam, Sang-Soo
    • Journal of Acupuncture Research
    • /
    • v.27 no.5
    • /
    • pp.51-58
    • /
    • 2010
  • Objectives : The purpose of this study is to assess the effect of laser acupuncture at $HT_7$ for reducing mental stress using power spectrum analysis of the heart rate variability. Methods : 36 healthy volunteers(control group: 18, treatment group: 18) participated in this study. After instrumentation and 5-minute rest period, 5-minute metal stress by operation was provided. HRV was recorded before and after the mental stress(1st, 2nd HRV). After 2nd HRV recording, the control group rested for 15 minutes without any treatments. Participants in the treatment group received laser acupuncture to $HT_7$ unilaterally and rested for 15minutes. Points were irradiated for 60seconds, and the intensity was 1.8J(output 20%). And then 3rd HRV was recorded. Results : In simple rest group, LF norm showed a significant change after mental stress. In laser acupuncture group, LF norm, HF norm, LF, HF and LF/HF ratio showed a significant change after mental stress. But there were no significant difference between two groups(ANCOVA test, p>0.05). In laser acupuncture group, LF norm, HF norm, HF and LF/HF ratio showed a significant change after laser acupuncture treatment. And there were significant differences between two groups(p<0.05). Conclusions : This study suggests that laser acupuncture at $HT_7$ can regulate and prevent the alternation of autonomic nervous system due to mental stress.

Reliability Improvement of Offshore Structural Steel F690 Using Surface Crack Nondamaging Technology

  • Lee, Weon-Gu;Gu, Kyoung-Hee;Kim, Cheol-Su;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.327-335
    • /
    • 2021
  • Microcracks can rapidly grow and develop in high-strength steels used in offshore structures. It is important to render these microcracks harmless to ensure the safety and reliability of offshore structures. Here, the dependence of the aspect ratio (As) of the maximum depth of harmless crack (ahlm) was evaluated under three different conditions considering the threshold stress intensity factor (Δkth) and residual stress of offshore structural steel F690. The threshold stress intensity factor and fatigue limit of fatigue crack propagation, dependent on crack dimensions, were evaluated using Ando's equation, which considers the plastic behavior of fatigue and the stress ratio. ahlm by peening was analyzed using the relationship between Δkth obtained by Ando's equation and Δkth obtained by the sum of applied stress and residual stress. The plate specimen had a width 2W = 12 mm and thickness t = 20 mm, and four value of As were considered: 1.0, 0.6, 0.3, and 0.1. The ahlm was larger as the compressive residual stress distribution increased. Additionally, an increase in the values of As and Δkth(l) led to a larger ahlm. With a safety factor (N) of 2.0, the long-term safety and reliability of structures constructed using F690 can be secured with needle peening. It is necessary to apply a more sensitive non-destructive inspection technique as a non-destructive inspection method for crack detection could not be used to observe fatigue cracks that reduced the fatigue limit of smooth specimens by 50% in the three types of residual stresses considered. The usefulness of non-destructive inspection and non-damaging techniques was reviewed based on the relationship between ahlm, aNDI (minimum crack depth detectable in non-destructive inspection), acr N (crack depth that reduces the fatigue limit to 1/N), and As.

Comparison of Stress Indicators in Blood and Muscle of Pigs in Conventional and Animal Welfare Farms (일반 및 동물복지농장 돼지의 혈액 및 근육 내 스트레스 인자 비교)

  • Lee, Jeong-Eun;Park, Jin-Ryong;Kang, Da-Rae;Kim, Hee-Eun;Nam, Ki-Chang;Shim, Kwan-Seob
    • Korean Journal of Organic Agriculture
    • /
    • v.28 no.4
    • /
    • pp.627-641
    • /
    • 2020
  • Intensive farming methods that do not guarantee animal welfare can induce stress in pigs. Stress, in turn, can reduce their disease resistance and influence their hormones and metabolites in such a manner that productivity is negatively affected. This study was conducted to compare the stress related factors and blood characteristics of pigs raised on conventional farms and those raised on animal welfare farms. We measured the levels of cortisol, epinephrine and norepinephrine, biochemical parameters in blood and glycogen, L-lactate and heat shock protein 70 (HSP70) in muscle, as physiological markers of indicating the stress in conventional farm pigs (Control, n=10) and animal welfare farm pigs (Welfare, n=10). We found that there was a significant difference in the albumin-globulin ratio (A/G ratio), as well as the albumin (ALB), blood urea nitrogen (BUN) and aspartate aminotransferase (AST) levels between the two farms. Epinephrine was significantly higher in conventional farm, while level of norepinephrine was higher in animal welfare farm. There was no significant difference in cortisol, which is known as a stress hormone, across the two groups of farms. Muscular glycogen content was significantly high in animal welfare farm pigs. While L-lactate tended to be low in the animal welfare farm pigs, the difference between them and the conventional farm cohorts was not significant. HSP70 showed high levels of expression in conventional farm. Thus, we suggested that blood parameter results showed a stress response in the livers of conventional farm, and that catecholamine hormones, glycogen, L-lactate and HSP70 can be used as physiological factors of assessing animal welfare.

Stress and wear distribution characteristics of cutterhead for EPB shield tunneling in cobble-boulders

  • Zhiyong Yang;Xiaokang Shao;Hao Han;Yusheng Jiang;Jili Feng;Wei Wang;Zhengyang Sun
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.73-84
    • /
    • 2024
  • Owing to the high strength and abrasive characteristics of cobble-boulders, cutters are easily worn and damaged during shield tunneling, making construction inefficient. In the present work, the stress on the ripper and scraper on the cutterhead was analyzed by the PFC3D-FLAC3D coupling model of shield tunneling to get insight into the performance of the cutterhead for cutting underground cobble and boulders. The numerical calculation results revealed that the increase in trajectory radius leads to a rising stress on the cutters, and the stress on the front cutting surface is greater than that on the back of the cutters. Moreover, the correlation between cutter wear and stress is revealed based on field measurement data. The distribution of the cutter stress is consistent with the cutter wear and breakage characteristics in actual construction, in which more extensive cutter stress is exhibited, extreme cutter wear appears, and more cutter breakage occurs. Finally, the relationship between the cutterhead opening area's layout and cutter wear distribution was investigated, indicating that the cutter wear extent is the most severe in the region where the radial opening ratio dropped sharply.

The Observation of Fatigue Striations for Aluminum Alloy by Atomic Force Microscope(AFM) (원자력 현미경(AFM)에 의한 알루미늄 합금의 피로 스트라이에이션 관찰)

  • Choe, Seong-Jong;Gwon, Jae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.955-962
    • /
    • 2000
  • Scanning Probe Microscope (SPM) such as Scanning Tunneling Microscope (STM) and Atomic Force Microscope (AFM) was shown to be the powerful tool for nano-scale characterization of a fracture surface . AFM was used to study cross sectional profiles and dimensions of fatigue striations in 2017-T351 aluminum alloy. Their widths (SW) and heights (SH) were measured from the cross sectional profiles of three-dimension AFM images. The following results that will be helpful to understand the fatigue crack growth mechanism were obtained. (1) Coincidence of the crack growth rate with the striation width was found down to the growth rate of 10-5 mm/cycle. (2) The relation of SH=0.085(SW)1.2 was obtained. (3) The ratio of the striation height to its width SH/SW did not depend on the stress intensity factor range K and the stress ratio R. (4) Not only the SW but also the SH changed linearly with the crack tip opening displacement (CTOD) when plotted in log-log scale. From these results, the applicability of the AFM to nano-fractography is discussed.

The Effects of the Microstructural Change of Dual Phase Steel on Fatigue Fracture Propagation (복합조직강의 미시조직변화가 피로파괴전파에 미치는 영향)

  • Oh, Sae-Wook;Kim, Ung-Jip
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.198-198
    • /
    • 1991
  • Not only difference of fatigue crack growth and propagation behavior resulted from the grain size, the hardness ratio and volume fraction in M.E.F. dual phase steel composed of martensite in hard phase and ferrite in soft phase, but also the effects of the plastic constraint were investigated by fracture mechanics and microstructural method. The main results obtained are as follows: 1) The fatigue endurance of M.E.F. steel increases with decreasing the grain size, increasing the ratio of hardness and volume fraction. 2) The initiation of slip and crack occures faster as the stress level goes higher. These phenomena result from the plastic constraint effect of the second phase. 3) The crack propagation rate in the constant stress level is faster as the grain size gets larger, the ratio of hardness lower and volume fraction smaller.

Experimental study of shear behavior of planar nonpersistent joint

  • Haeri, Hadi;Sarfarazi, Vahab;Lazemi, Hossein Ali
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.639-653
    • /
    • 2016
  • The present article discusses the effect of the ratio of bridge surface to total shear surface, number of bridge areas and normal stress on the failure behavior of the planar non-persistent open joints. Totally, 38 models were prepared using plaster and dimensions of $15cm{\times}15cm{\times}15cm$. The bridge area occupied $45cm^2$, $90cm^2$ and $135cm^2$ out of the shear surface. The number of rock bridges increase in fixed area. Two similar samples were prepared on every variation in the rock bridges and tested for direct shear strength under two high and low normal loads. The results indicated that the failure pattern and the failure mechanism is mostly influenced by the ratio of bridge surface to total shear surface and normal stress so that the tensile failure mode change to shear failure mode by increasing in the value of introduced parameters. Furthermore, the shear strength and shear stiffness are closely related to the ratio of bridge surface to total shear surface, number of bridge areas and normal stress.

Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure

  • Mehar, Kulmani;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.565-578
    • /
    • 2018
  • This research article reported the nonlinear finite solutions of the nonlinear flexural strength and stress behaviour of nano sandwich graded structural shell panel under the combined thermomechanical loading. The nanotube sandwich structural model is derived mathematically using the higher-order displacement polynomial including the full geometrical nonlinear strain-displacement equations via Green-Lagrange relations. The face sheets of the sandwich panel are assumed to be carbon nanotube-reinforced polymer composite with temperature dependent material properties. Additionally, the numerical model included different types of nanotube distribution patterns for the sandwich face sheets for the sake of variable strength. The required equilibrium equation of the graded carbon nanotube sandwich structural panel is derived by minimizing the total potential energy expression. The energy expression is further solved to obtain the deflection values (linear and nonlinear) via the direct iterative method in conjunction with finite element steps. A computer code is prepared (MATLAB environment) based on the current higher-order nonlinear model for the numerical analysis purpose. The stability of the numerical solution and the validity are verified by comparing the published deflection and stress values. Finally, the nonlinear model is utilized to explore the deflection and the stresses of the nanotube-reinforced (volume fraction and distribution patterns of carbon nanotube) sandwich structure (different core to face thickness ratios) for the variable type of structural parameter (thickness ratio, aspect ratio, geometrical configurations, constraints at the edges and curvature ratio) and unlike temperature loading.

Effects of Breeder Age and Stocking Density on Performance, Carcass Characteristics and Some Stress Parameters of Broilers

  • Onbasilar, E.E.;Poyraz, O.;Cetin, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.2
    • /
    • pp.262-269
    • /
    • 2008
  • The aim of this study was to determine the effects of breeder age and stocking density on performance, carcass characteristics and some stress parameters (H-L ratio, serum glucose, cholesterol and triglyceride levels, tonic immobility test (TI), antibody production, relative asymmetry (RA) and external appearances). This experiment was carried out with 705 one-day old male broiler chicks (Ross 308) obtained from three different ages of broiler breeder (32, 48 and 61 wks). Each age group was randomly divided into two stocking density groups (11.9 and 17.5 broilers per $m^2$) with 5 replications per group. The experimental period was 6 weeks. Broilers from 32 wk-old breeders had lower initial weight (p<0.001), body weight gain of the first 3 week of rearing (p<0.01), the percentage of abdominal fat (p<0.001) and serum cholesterol level (p<0.01); higher percentage of gizzard (p<0.01) and longer TI duration (p<0.001) than those from 48 and 61 wk-old breeders. Broilers reared at 17.5 b/m2 had lower final BW, body weight gain, feed consumption, feather condition and foot health (p<0.001), higher percentage of heart, H-L ratio, serum glucose and cholesterol levels (p<0.001), and longer TI durations (p<0.001). There were no significant interactions in examined parameters except for feed to gain ratio between breeder age and stocking density.