• Title/Summary/Keyword: Stress intensity/life test

Search Result 72, Processing Time 0.023 seconds

A Study on Prediction of Fatigue Damage Crack Growth for Stiffener Bonded Composite Laminate Panel (보강재 본딩접합 복합재 적층판구조 피로손상 균열진전 수명예측에 대한 연구)

  • Kwon, Jung-Ho;Jeong, Seong-Moon
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.79-84
    • /
    • 2013
  • The prediction and analysis procedure of fatigue damage crack growth life for a stiffener bonded composite laminate panel including center hole and edge notch damage, was studied. It was performed on the basis of fatigue damage growth test results on a laminated skin panel specimens and the analysis results of stress intensity factor for the stiffener bonded composite panel. According to the comparison between experimental test and prediction results of fatigue damage growth life, it was concluded that the residual strength and damage tolerance assessment can be carried out along to the edge notch crack growth.

The Effect of Defect Location Near a Circular Hole Notch on the Relationship Between Crack Growth Rate (da/dN) and Stress Intensity Factor Range (δK) - Comparative Studies of Fatigue Behavior in the Case of Monolithic Al Alloy vs. Al/GFRP Laminate - (원공노치 인근에 발생한 결함의 위치변화가 균열성장률(da/dN) 및 응력확대계수범위(δK)의 관계에 미치는 영향 - 단일재 알루미늄과 Al/GFRP 적층재의 피로거동 비교 -)

  • Kim, Cheol-Woong;Ko, Young-Ho;Lee, Gun-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.344-354
    • /
    • 2007
  • The objective of this study is to investigate the effect of arbitrarily located defect around the circular hole in the aircraft structural material such as Al/GFRP laminates and monolithic Al alloy sheet under cyclic bending moment. The fatigue behavior of these materials may be different due to the defect location. Material flaws in the from of pre-existing defects can severely affect the fatigue crack initiation and propagation behavior. The aim of this study is to evaluate effects of relative location of defects around the circular hole in monolithic Al alloy and Al/GFRP laminates under cyclic bending moment. The fatigue behavior i.e., the stress concentration factor($K_t$), the crack initiation life($N_i$), the relationship between crack length(a) and cycles(N), the relationship between crack growth rate(da/dN) and stress intensity factor range(${\Dalta}K$) near a circular hole are considered. Especially, the defects location at ${\theta}_1=0^{\circ}\;and\;{\theta}_2=30^{\circ}$ was strongly effective in stress concentration factor($K_t$) and crack initiation life($N_i$). The test results indicated the features of different fatigue crack propagation behavior and the different growing delamination shape according to each location of defect around the circular hole in Al/GFRP laminates.

Study on Properties and Accelerated Life-time Test of Rubber O-ring by Temperature Stress

  • Shin, Young-Ju;Kang, Bong-Sung;Chung, Yu-Kyung;Choi, Kil-Yeong;Shin, Sei-Moon
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2006.05a
    • /
    • pp.48-54
    • /
    • 2006
  • In this thesis, accelerated life test (ALT) method and procedure for rubber O-ring are applied to assure specified reliability of the products at guaranteeing the life of the products. Rubber O-ring is parts that keep intensity or make machine operation smoothly on attrition portion of machine and is used to prevent that oil is leaked. Usually. Rubber O-ring used NBR that is copolymer of acrylonitrile and butadiene. this are superior oil resistance, heat resistance, durability of abrasion, cold resistance, chemical resistance etc. The accelerated life test model for rubber O-ring are developed using the relationship between stresses and life characteristics of products. Using the accelerated life test method and the acceleration life test equipment which is developed, we performed life test, collected life data and analyzed the results of tests. The proposed accelerated life test method and procedure may be extended and applied to testing similar kinds of products to reduce test times and costs of the tests remarkably.

  • PDF

A study on the growth behaviors of surface fatigue crack initiated from a small-surface defect of 2024-T3 and brass (2024-T3 및 황동의 작은 표면결함재의 피로균열 성장특성에 관한 연구)

  • 서창민;오명석
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.53-64
    • /
    • 1996
  • In this paper, rotating bending fatigue tests have been carried out to investigate the growth behabiors of surface fatigue crack initiated from a small artificial surface defect, that might exist in real structures, on 2024-T3 and 6:4 brass. The test results are analysed in the viewpoints of both strength of materials and fracture mechanics, it can be concluded as follows. The effect of a small artificial surface defect upon the fatigue strength is very large. The sensitivity of 2024-T3 on the defect is higher than that of 6:4 brass. The growth behavior of the surface fatigue crack of 2024-T3 is different from that of 6:4 brass. The growth rate of the surface fatigue crack of 2024-T3 is considerably rapid in the early stage of the fatigue life and apt to decrease in the later stage. It was impossible to establish a unifying approach in the analysis of crack growth begabior of 2024-T3 and 6:4 brass using the maximum stress intensity factor because of their dependence on stress level. But if the elastic strain and cyclic total strain intensity factor range were applied to obtain the growth rate of surface fatigue cracks of the materials, the data were found to be nearly coincided.

  • PDF

A Study of Crack Propagation and Fatigue Life Prediction on Welded Joints of Ship Structure(I) (선체 용접부의 균열진전 및 피로수명 예측에 관한 연구(I))

  • Kim, Kyung-Su;Ito, Hisashi;Seo, Yong-Seok;Jang, Beam-Sean;Kim, Beam-Il;Kwan, Young-Bin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.669-678
    • /
    • 2008
  • The fatigue life of ship structure under cyclic loading condition is made up of initiation and propagation stages. In this study, crack growth test is carried out on large scale structure test specimens and fracture mechanical analysis is performed. The fatigue lives measured from fatigue tests are compared with DNV, Matsuoka and BS 5400 S-N curve. And to predict the crack initiation life, S-N curve, corresponding to crack length 20mm at welded joint, is developed based on hot spot stress range. Also crack propagation life is calculated using crack growth equation. Consequently, computed crack propagation life is compared with experiment results.

A Study of Fatigue Strength Improvement for Cr-Mo Steel in Long Term service (장기간 사용한 Cr-Mo강의 피로강도향상 방법에 관한 연구)

  • 진영준
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.27-35
    • /
    • 2001
  • For the purpose of healing the degradation part, $CO_2$ laser beam was irradiated with different irradiation condition (porer, diameter, velocity and beam type) to find out optimum irradiation condition. The test series of hardness, residual stress measurement, and fatigue were carried out after the irradiation. Experimental results show that micro-hardness values on the surface of the irradiated specimens m approximately 2.5 times higher than those of un-irradiated ones. Fatigue tests show that the fatigue life was improved by the compressive residual stress after laser beam irradiation. However, some specimens with different conditions show the shorter fatigue life. It means that laser beam irradiation with optimum irradiation condition and optimum absorb energy, Q can improve the fatigue strength.

  • PDF

Behavioral Characteristics of Fatigue Cracks in Small Hole Defects Located on Opposite Sides of the Shaft Cross Section

  • Sam-Hong;Il-Hyuk;Jeong-Moo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.36-42
    • /
    • 2004
  • The shaft with the circular cross section has symmetric structural combination parts to keep the rotating balance. Hence the crack usually initiates from symmetric combination parts due to the stress concentration of these parts. In this study to estimate the fatigue behavior of symmetric cracks, the fatigue test was performed by using a rotary bending tester and the specimen with symmetric defects in circular cross section. The characteristics of crack initiation and propagation on the symmetric surface cracks in circular cross section were examined. We also observed the internal crack using the oxidation coloring method and investigated the fatigue behavior using the relationship between the surface crack and the internal crack. As a result, the fatigue life of symmetric cracks was reduced by 35% compared to that of a single crack. We examined the characteristics of fatigue behavior of elements with symmetric cracks using internal crack propagation rate and maximum stress intensity factor range that were obtained from an approximation method.

Fatigue Strength Improvement and Fatigue Characteristics by TIG-Dressing on Weld Bead Toes (용접지단부 TIG처리에 의한 피로강도향상 및 피로특성)

  • Jung, Young Hwa;Kim, Ik Gyeom;Nam, Wang Hyone;Chang, Dong Huy
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.169-178
    • /
    • 2000
  • The 4-point bending tests have been performed In order to estimate the effect of TIG-dressing on fatigue strength and fatigue characteristics quantitatively for non load-carrying fillet welded joints subjected to pure bending. As a result of fatigue tests, fatigue strengths of as-welded specimens have satisfied the grade of fatigue strength prescribed in specifications of korea, AASHTO and JSSC. Fatigue strength at 2 million cycles of TIG-dressing specimens have increased compared with as-welded specimens. As the result of beachmark tests, fatigue cracks occurred at several points, where the radius of curvature and flank angle in the weld bead toes were low, and grew as semi-elliptical cracks, then approached to fracture. As a result of finite element analysis, stress concentration factor in weld bead toes has closely related to the flank angle and radius of curvature, and between these, the radius of curvature has more largely affected in stress concentration factor than flank angle. As a result of fracture mechanics approaches, the crack correction factor of test specimens has largely affected on stress gradient correction factor in case a/t is below 0.4. From the relations between stress intensity factor range estimated from FEM analysis and fatigue crack growth rate, fatigue life has been correctly calculated.

  • PDF

Propagation Characteristics of Fatigue Microcracks on Smooth Specimen of $2_{1/4}$ Cr-1 Mo Steel ($2_{1/4}$ Cr-1 Mo강의 평활재상의 미소한 표면피로균열의 성장특성)

  • Suh, Chang-Min;Woo, Byung-Chul;Jang, Hui-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.100-111
    • /
    • 1990
  • In this paper, fatigue tests were carried out at stress test levels of 461 MPa, 441 MPa, and 431 MPa by using smooth specimen of$2_{1/4}$ Cr-1 Mo steel with the stress ratio(R) of 0.05. The initiation, growth and coalescense process of the major cracks and sub-cracks among the fatigue cracks on the smooth specimen are investigated and measured under each stress level at a constant cycle ratio by the replica technique with optical microscope. Some of the important results are as follows: In spite of the difference of stress levels, the major crack data gather into a small band in the curve of surface crack length and crack depth against cycle ratio N/Nf. The sub-crack data, however, deviate from the band of the major crack. The growth rates, da/dN, of major and sub-crack plotted against the stress intensity factor range, ${\Delta}K$, have the tendency to be compressed on a relatively small band. But it is more effective to predict fatigue life through major cracks. The propagation behavior of surface microcracks on the smooth specimens coincides with that of the specimen having an artificial small surface defect or through crack.

  • PDF

A Quantitative Evaluation of ${\Delta}K_{eff}$ Estimation Methods Based on Random Loading Crack Growth Data. (랜덤하중하의 피로균열진전 데이터를 이용한 ${\Delta}K_{eff}$ 평가법의 정량적 평가)

  • Koo, Ja-Suk;Song, Ji-Ho;Kang, Jae-Youn
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.208-213
    • /
    • 2004
  • Methods for estimation of the effective stress intensity factor range (${\Delta}K_{eff}$) are evaluated for narrow and wide band random loading crack growth test data of 2024-T351 aluminum alloy. Three methods of determining $K_{op}$, visual measurement, ASTM offset compliance method, and the neural network method proposed by Kang and Song, and three methods of estimating ${\Delta}K_{eff}$, conventional, the 2/PI0 and 2/PI methods proposed by Donald and Paris, are compared in a quantitative manner by using the results of fatigue crack growth life prediction under random loading. For all $K_{op}$ determination methods discussed, the 2/PI0 and 2/PI methods of estimating ${\Delta}K_{eff}$ provide better results than conventional method for narrow and wide band random loading data.

  • PDF