• Title/Summary/Keyword: Stress correction

Search Result 320, Processing Time 0.026 seconds

Correction of Error due to Hole Eccentricity in Hole-drilling Method Using Neural Network (신경망 기법을 이용한 구멍뚫기법에서의 구멍 편심오차 보정)

  • Kim, Cheol;Yang, Won-Ho;Cho, Myoung-Rae;Heo, Sung-Pil
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.412-418
    • /
    • 2001
  • The measurement of residual stresses by the hole-drilling method has been commonly used to evaluate residual stresses in structural members. In this method, eccentricity can usually occur between the hole center and rosette gage center. In this study, the error due to the hole eccentricity is corrected using the neural network. The neural network has trained training examples of normalized eccentricity, eccentric direction and direction of maximum stress at eccentric case using backpropagation learning process. The trained neural network could corrected the error of measured residual stress in experiments with hole eccentricity. The proposed neural network is very useful for correction of the error due to hole eccentricity in hole-drilling method.

  • PDF

Reasonable Evaluation of Thermal Stress in the Hydration Heat Analysis (범용구조해석 프로그램의 수화열응력 산정기법 연구)

  • 전세진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.789-794
    • /
    • 2002
  • The relationship is investigated between material modeling of concrete and the evaluation procedure of thermal stress by the hydration heat. In this respect, some important points are suggested to which special attention should be paid to reasonably evaluate the thermal stress using the widely-used structural analysis programs. This study indicates that proper material model should be used to draw incremental stress evaluation that takes into account the change of elastic modulus with time. Some correction techniques are also presented when using the program that don't have proper built-in procedure for the calculation of the thermal stress.

  • PDF

The Notched Strength and Fracture Criterion in Plain Woven Glass/Epoxy Composites With a Crack (노치부를 가진 Glass/Epoxy 복합재료의 노치강도 평가와 불안정 파괴조건)

  • 김정규;김도식
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.57-67
    • /
    • 1993
  • The fracture behavior of plain woven glass/epoxy composite plates with a crack is investigated under static tensile loading. It is shown in this paper that the characteristic length associated with the point stress criterion depends on the crack length. To predict the not ched tensile strength, the point stress criterion proposed by Whitney and Nuismer are modified. An excellent agreement is found between the experimental results and the analytical prediction of the modified point stress criterion. The condition of unstable crack growth in the presence of a per-existing flaw(machined notch) is examined by means of the maximum stress intensity factor $K_max$ using maximumload P$_max$. The values of $K_max$ evaluated from energy release rate G$_max$(the compliance me thod) indicate a wide difference. Therefore in regard to anisotropy and heterogeneity of the composite materials studied, the modified shape correction factor f(a/W) is obtained. $K_max$evaluated by the compliance method a little or insignificantly depends on the initial crack length a, the specimen thickness B, the crack angle .theta. and the specimen geometry.

  • PDF

A Study on the Crack Growth Behavior of a Inclined Crack in a Non-Uniform Thickness Material (두께가 일정하지 않은 재료에서 경사진 균열의 성장거동에 관한 연구)

  • 조명래;표창률;박종주;고명훈
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.27-38
    • /
    • 1997
  • The effect of geometry factors on the combined mode stress intensity factor behaviors of a slant crack in a non-uniform thickness material was analysed by 2-dimensional theoretical analysis. The analysis is based on the Laurent's series expansions of complex potentials where the complex coefficients of the series are determined from the compatibility and the equilibrium conditions of the thickness interface and the stress free conditions of the crack surface. In numerical calculations the perturbation technique is employed. The expressions for the crack tip stress intensity factor are given in the form of power series of dimensionless crack length $\lamda$, and the function of crack slant angle $\alpha$ and thickness ratio $\beta$. The results of numerical calculations for each problems are represented as the correction factors F($\lamda$, $\alpha$, $\beta$). The results clearly show the following characteristics : The correction factors of the combined mode stress intensity factors for a non-uniform thickness material can be defined in the form of F($\lamda$, $\alpha$, $\beta$). The stress intensity factor values for a given crack length are decreased with increase of thickness ratio $\beta$.

  • PDF

Destructive testing of adhesively bonded joints under static tensile loading

  • Ochsner, A.;Gegner, J.
    • Journal of Adhesion and Interface
    • /
    • v.5 no.2
    • /
    • pp.22-36
    • /
    • 2004
  • Several in-situ testing methods of adhesively bonded joints under static short-time tensile loading are critically analyzed in terms of experimental procedure and data evaluation. Due to its rather homogeneous stress state across the glue line, the tensile-shear test with thick single-lap specimens, according to ISO 11003-2, has become the most important test process for the determination of realistic materials parameters. This basic method, which was improved in both, the experimental part by stepped adherends and easily attachable extensometers and the evaluation procedure by numeric substrate deformation correction and test simulation based on the finite element method (FEM), is therefore demonstrated by application to several kinds of adhesives and metallic adherends. Multi-axial load decreases the strength of a joint. This effect, which is illustrated by an experimental comparison, impedes the derivation of realistic mechanical characteristics from measured force-displacement curves. It is shown by numeric modeling that tensile-shear tests with thin plate substrates according to ISO 4587, which are widely used for quick industrial quality assurance, reveal an inhomogeneous stress state, especially because of relatively large adherend deformation. Complete experimental determination of the elastic properties of bonded joints requires independent measurement of at least two characteristics. As the thick-adherend tensile-shear test directly yields the shear modulus, the tensile butt-joint test according to ISO 6922 represents the most obvious complement of the test programme. Thus, validity of analytical correction formulae proposed in literature for the derivation of realistic materials characteristics is verified by numeric simulation. Moreover, the influence of the substrate deformation is examined and a FEM correction method introduced.

  • PDF

Thermal Stress Calculations Using Enhanced Green's Function Considering Temperature-dependent Material Properties (온도 의존적 재료물성치를 고려한 개선된 그린함수 기반 열응력 계산)

  • Han, Tae-Song;Huh, Nam-Su;Jeon, Hyun-Ik;Ha, Seung-Woo;Cho, Sun-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.535-540
    • /
    • 2015
  • We propose an enhanced Green's function approach to predict thermal stresses by considering temperature-dependent material properties. We introduce three correction factors for the maximum stress, the time taken to reach maximum stress, and the time required to attain steady state based on the Green's function results for each temperature. The proposed approach considers temperature-dependent material properties using correction factors, which are defined as polynomial expressions with respect to temperatures based on Green's functions, that we obtain from finite-element (FE) analyses at each temperature. We verify the proposed approach by performing detailed FE analyses on thermal transients. The Green's functions predicted by the proposed approach are in good agreement with those obtained from FE analyses for all temperatures. Moreover, the thermal stresses predicted using the proposed approach are also in good agreement with the FE results, and the proposed approach provides better predictions than the conventional Green's function approach using constant, time-independent material properties.

Stress Behaviors of Superheater Tubes under Load Change Operation in HRSG (배열회수보일러의 부하변동 운전에 따른 과열기 튜브들의 응력거동)

  • Chong, Chae-Hon;Song, Jung-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.33-39
    • /
    • 2008
  • The purpose of this study is not only to evaluate the stress behavior of tubes in superheater in HRSG during the load change operation but also to find root causes of failure from stress behavior. Firstly, temperature during operation was collected to perform stress analysis from actual HRSG. Part load and full load stress analysis which can be represented as the whole load change operations were performed using commercial finite element software. The possibility that can lead to tubes failure is found by stress analysis and its results is compared with metallurgical mircrostructure of failed tube which was taken from actual HRSG.

Influence of the Inclined Hole in Residual Stresses Measurement Using the Hole-Drilling Method (구멍뚫기법을 이용한 잔류응력 측정시 경사구멍의 영향)

  • Kim, Cheol;Yang, Won-Ho;Seok, Chang-Sung;Heo, Sung-Pil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.201-206
    • /
    • 2001
  • The hole-drilling method makes a little hole through the metal surface that has residual stress and measures the relieved stress with a strain gage. It is used widely in measuring the residual stress of surfaces. In this method, the inclined hole is one of the source of error. This paper presents a finite element analysis of influence of the inclined hole for the uniaxial residual stress field. The stress differences between measured and applied residual stress increase proportionally to inclined angle of the hole. The correction equations which easily obtain the residual stress taking account of the inclined angle and direction are derived. The measurement error of stress due to the inclined hole can be reduced to around 1% through this study.

  • PDF

A Single-Stage Power Factor Correction Converter for 90-265$V_{rms}$ Line Applications (90-265$V_{rms}$ 입력범위를 갖는 단일전력단 역률개선 컨버터)

  • 구관본
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.145-149
    • /
    • 2000
  • A single-stage power factor correction AC/DC converter with a simple link voltage suppressing circuit (LVSC) for the universal line application is proposed. Using this simple circuit a low link voltage can be realized without deadbands at line zero-crossings. The proposed converter is analyzed and a prototype converter with 5C, 12V output is implemented to verify the performance. The experimental results show that the link voltage stress and efficiency are about 447V and 81%, respectively.

  • PDF

Evaluation Method of Adhesive Fracture Toughness Based on Double Cantilever Beam (DCB) Tests Including Residual Thermal Stresses

  • Yokozeki, Tomohiro;Ogasawara, Toshio
    • Advanced Composite Materials
    • /
    • v.17 no.3
    • /
    • pp.301-317
    • /
    • 2008
  • The energy release rate associated with crack growth in adhesive double cantilever beam (DCB) specimens, including the effect of residual stresses, was formulated using beam theory. Because of the rotation of the asymmetric arms in the adhesive DCB specimens due to temperature change, it is necessary to correct the evaluated fracture toughness of the DCB specimens, specifically in the case of a large temperature change. This study shows that the difference between the true toughness and an apparent toughness due to the consequence of ignoring residual stresses can be calculated for a given specimen geometry and thermo-mechanical properties (e.g. coefficient of thermal expansion). The calculated difference in the energy release rates based on the present correction method is compared with that from FEM in order to verify the present correction method. The residual stress effects on the evaluation of the adhesive fracture toughness are discussed.