• 제목/요약/키워드: Stress and Strain Distribution

검색결과 605건 처리시간 0.032초

초고강도 콘크리트에 적합한 응력-변형율 모델과 응력분포 모델의 제안 (A Proposal of New Model for Stress-Strain Relationship and Stress Distribution of Ultra High-Strength Concrete)

  • 장일영;박훈규
    • 콘크리트학회지
    • /
    • 제9권5호
    • /
    • pp.197-206
    • /
    • 1997
  • 본 연구에서는 기존의 초고강도 콘크리트에 대한 실험자료를 근거로 합리적인 통계적 기법을 이용하여 초고강도 콘크리트의 설계 실용화를 위한 응력-변형율 관계 모델과 응력분포 모델을 제안하는 것이 목적이다. 이를 위하여 첫째, 콘크리트의 응력-변형율 특성을 결정하는 재료 변수들(탄성계수, 최대 압축강도시 변형율 등)에 대한 검토를 수행하였다. 둘째, 이를 바탕으로 일반성과 정확성을 동시에 갖춘 초고강도 콘크리트(700~1400kg/$\textrm{cm}^2$)에 적합한 응력-변형율 모델을 제안, 비교, 고찰하엿다. 셋째, 제안된 응력-형율 모델로부터 초고강도 콘크리트 구조의 극한강도를 평가하기에 적합한 응력분포모델을 제안, 일반성과 정확성을 비교 검증하였다.

변형률 분포를 가진 탄소섬유복합체의 인장특성에 대한 연구 (Study on Tensile Properties of Carbon Fiber Reinforced Polymers (CFRP) Laminate with Strain Distribution)

  • 김윤곤
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권6호
    • /
    • pp.25-33
    • /
    • 2020
  • 취성재료의 변형률 분포와 인장물성과의 상관관계를 분석하기 위해 변형률 분포를 가지도록 탭부분을 변형한 5개 타입-S0, SD1, SD2, SV1, SV2 - 의 탄소섬유보강폴리머(CFRP) 인장시편군을 시험하였다. 변형률 분포가 큰 SD2, SV2 의 극한응력 및 변형률이 SD1, SV1 보다 작게 나타났는데, 이는 비대칭 형상의 SD타입보다 대칭 형상의 SV의 시험결과에서 더 분명하게 나타냈다. 더불어 본 연구에서 사용한 변형률 분포를 가진 대부분의 시편의 극한 응력 및 변형률은 변형률 분포가 없는 대조군과 비교하였을 때 감소하였다. 이러한 결과는 1) 변형률계를 통해 직접 계측한 변형률의 평균값, 2) 전체변형량을 유효길이로 나눠 산정하는 환산변형률, 3) 탄성계수와 극한하중으로부터 유도하는 (극한)유효변형률을 통해 다각적으로 분석되었다. 변형률계에서 계측된 값은 국소구간 응답을 정확히 나타내지만, 전단면의 응답을 표현하는 것은 아니다. 반면, 환산변형률과 유효변형률은 전단면의 평균거동을 나타내므로, 게이지의 단점을 보완할 수 있다. 특히 유효변형률은 극한하중 부근에서 변형률계 측정값이 게이지 손상이나 비정상적 계측값 등의 원인으로 유효하지 않을 때도 실무적으로도 사용할 있는 보수적인 파단변형률을 산정할 수 있다. 이 값은 부분파단이 발생한 경우에도 사용할 수 있으며, 변형률 분포를 가지는 시편에서 합리적으로 유용하다.

경골 내 변형률 및 응력 분포 특성 분석을 통한 새로이 개발된 재치환용 인공슬관절의 생체역학적 안정성 평가: 유한요소해석 (Evaluation of Biomechanical Stability of Newly Developed Revision Total Knee Arthroplasty through Strain and Stress Distribution Analysis within the Tibia: Finite Element Analysis)

  • 한바울;장영웅;유의식;김정성;김한성;임도형
    • 대한의용생체공학회:의공학회지
    • /
    • 제34권1호
    • /
    • pp.14-23
    • /
    • 2013
  • In this study, biomechanical stability of the newly developed revision total knee arthroplasty (rTKA) was evaluated through strain and stress distribution analysis within the implanted proximal tibia using a three-dimensional finite element (FE) analysis. 2000N of compressive load (about 3 times body weight) was applied to the condyle surface on spacer, sharing by the medial (60%) and lateral (40%) condyles simulating a stance phase before toe-off. The results showed that PVMS within the revision total knee arthroplasty and the proximal tibia were less than yield strength considering safe factor 4.0 (rTKA: less than 10%, Cortical bone: less than 70%, Cancellous bone: less than 70%). The materials composed of them and the strain and stress distributions within the proximal tibia were generally well matched with those of a traditional revision total knee arthoplasty (Scorpio TS revision system, Stryker Corp., Michigan, USA) without the critical damage strain and stress, which may reduce the capacity for bone remodeling, leading to bone degeneration. This study may be useful to design parameter improvement of the revision total knee arthoplasty in biomechanical stability point of view beyond structural stability of revision total knee arthoplasty itself.

냉연 형상 교정시 Stress 천이 현상 연구 (Study of Stress Distribution of Cold Rolled Steel Sheets in Tension Leveling Process)

  • 최환택;황상무;구진모;박기철
    • 소성∙가공
    • /
    • 제13권6호
    • /
    • pp.497-502
    • /
    • 2004
  • The shape of cold rolled steel sheets is defined as the degree of flatness, and the flatter, the better. Because undesirable strip shapes of cold rolled steel sheets can affect not only visible problem but also automatic working process in customer's lines, the requirement of the customers is more and more stringent. So we usually used the tension leveler to make high quality of strip flatness. For the improvement of the quality of strip flatness, this report developed three- dimensional FEM (Finite Element Method) simulation model, and analysis about the strain and stress distribution of strip in the tension leveling process. The numerical study can be summarized as follows. (1) If we pass the edge wave material (steepness: $1.0\%$) that the stress-difference between the strip center and the edge is 5.2kgf through tension leveler. the stress-difference is decreased 0.45kgf and the steepness is improved to $0.29\%$. (2) If the Intermesh is increased from 6mm to 7mm, the steepness is improved from $0.294\%$ to $0.268\%$. (3) If the initial steepness is decreased form $1.0\%$ to $0.75\%$, the final steepness is improved from $0.294\%$ to $0.263\%$. We know that more increased intermesh and lower initial steepness make the final steepness improved.

Theoretical analysis of stress-strain behavior of multi-layer RC beams under flexure

  • Ertekin Oztekin
    • Structural Engineering and Mechanics
    • /
    • 제90권5호
    • /
    • pp.505-515
    • /
    • 2024
  • In this study, obtaining theoretical stress-strain curves and determining the parameters defining the equivalent rectangular stress block were aimed for 3 and 4-layered rectangular Reinforced Concrete (RC) cross-sections subjected to flexure. For these aims, the analytical stress-strain model proposed by Hognestad was chosen for the concrete grades (20 MPa≤fck≤60 MPa) used in this study. The tensile strength of the concrete was neglected and the thickness of the concrete layers in the compression zone of the concrete cross-section was taken as equal. In addition, while concrete strength was kept constant within each layer, concrete strengths belonging to separate layers were increased from the neutral axis towards the outer face of the compression zone of the concrete cross-section. After the equivalent rectangular stress block parameters were determined by numerical iterations, variations of these parameters depending on concrete strength in layers and layer numbers were obtained. Finally, some analytical equations have been proposed to predict the equivalent stress block parameters for the 3 and 4-layered RC cross-sections and validities of these proposed equations were shown by different metrics in this study.

Experimental investigation on CFRP-to-concrete bonded joints across crack

  • Anil, Ozgur;Belgin, Cagatay M.;Kara, M. Emin
    • Structural Engineering and Mechanics
    • /
    • 제35권1호
    • /
    • pp.1-18
    • /
    • 2010
  • Bonding of carbon fiber reinforced polymer (CFRP) composites has become a popular technique for strengthening concrete structures in recent years. The bond stress between concrete and CFRP is the main factor determining the strength, rigidity, failure mode and behavior of a reinforced concrete member strengthened with CFRP. The accurate evaluation of the strain is required for analytical calculations and design processes. In this study, the strain between concrete and bonded CFRP sheets across the notch is tested. In this paper, indirect axial tension is applied to CFRP bonded test specimen by a four point bending tests. The variables studied in this research are CFRP sheet width, bond length and the concrete compression strength. Furthermore, the effect of a crack- modeled as a notch- on the strain distribution is studied. It is observed that the strain in the CFRP to concrete interface reaches its maximum values near the crack tips. It is also observed that extending the CFRP sheet more than to a certain length does not affect the strength and the strain distribution of the bonding. The stress distribution obtained from experiments are compared to Chen and Teng's (2001) analytical model.

박판 스탬핑 공정의 주름발생 예측에 관한 연구 (Study on the Wrinkling Prediction in Sheet Metal Stamping Processes)

  • 황보원;금영탁
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.131-142
    • /
    • 2001
  • A wrinkling is the instability phenomenon influenced by material properties, shape geometry, forming conditions, stress state, etc. The wrinkling is considered as a critical defect in appearance of product. Many wrinkling prediction methods using thickness strain distribution and farming analysis have been proposed. The wrinkling, however, is not easily predicted precisely by these methods. In this study, the region in the biaxial plane stress state is modeled with a rectangular plate introducing the effective dimension, and critical stress values for the wrinkling are calculated. Prediction index for the wrinkling is then evaluated by normalizing the actual stress with respect to the critical stress. In order to show the validity and efficiency of the method proposed, the wrinkling prediction for a squared sheet in the uniaxial tensile stress and auto-body front finder panel is performed.

  • PDF

저항점용접(抵抗點熔接)에 따른 과도적(過渡的) 냉각(冷却) 온도이력(溫度履歷) (Transient Temperature Drstributions in a Adiabatic Plate Due to Resistance Spot Welding)

  • 김효철
    • 대한조선학회지
    • /
    • 제9권1호
    • /
    • pp.15-20
    • /
    • 1972
  • As the technique of resistance spot welding became more and more advanced the factors hitherto considered secondary become more and more important. Among these factors the distribution of heat and temperature during resistance spot welding is particularly important in conjunction with thermal stress, strain and residual stress, strain problems. The analytical investigations upon the transient temperature due to resistance spot welding were made for the carbon steel plate and aluminum alloy plate. The numerical values obtained by the analytical investigation are nearly identical with the temperature distribution which obtained by D.J. Sullivan and some other experimental data. It was thought therefore useful to estimate the heat effect upon the material such as a residual stress and strain, metalurgical change, change in physical properties and etc.

  • PDF

Cracking behavior of RC shear walls subject to cyclic loadings

  • Kwak, Hyo-Gyoung;Kim, Do-Yeon
    • Computers and Concrete
    • /
    • 제1권1호
    • /
    • pp.77-98
    • /
    • 2004
  • This paper presents a numerical model for simulating the nonlinear response of reinforced concrete (RC) shear walls subject to cyclic loadings. The material behavior of cracked concrete is described by an orthotropic constitutive relation with tension-stiffening and compression softening effects defining equivalent uniaxial stress-strain relation in the axes of orthotropy. Especially in making analytical predictions for inelastic behaviors of RC walls under reversed cyclic loading, some influencing factors inducing the material nonlinearities have been considered. A simple hysteretic stress-strain relation of concrete, which crosses the tension-compression region, is defined. Modification of the hysteretic stress-strain relation of steel is also introduced to reflect a pinching effect depending on the shear span ratio and to represent an average stress distribution in a cracked RC element, respectively. To assess the applicability of the constitutive model for RC element, analytical results are compared with idealized shear panel and shear wall test results under monotonic and cyclic shear loadings.

세 가지 상을 갖는 코드섬유-고무 복합재료의 계면의 영향 (Effect of Interface in Three-phase Cord-Rubber Composites)

  • 김종국;염영진
    • 대한기계학회논문집A
    • /
    • 제33권11호
    • /
    • pp.1249-1255
    • /
    • 2009
  • Cord-rubber composites widely used in tires show very complicated mechanical behavior such as nonlinearity and large deformation. Three-phase(cord, rubber and the interface) modeling has been used to analyze the stress distribution in the cord-rubber composites more accurately. In this study, finite element methods were performed using two-dimensional generalized plane strain element and plane strain element to investigate the stress distribution and effective modulus of cord-rubber composites. Neo Hookean model was used for rubber property and several interface properties were assumed for various loading directions. It was found that the interface properties affect the effective modulus and the distributions of shear stress.