• Title/Summary/Keyword: Stress Susceptibility

Search Result 210, Processing Time 0.03 seconds

Transcriptome analysis of Panax ginseng response to high light stress

  • Jung, Je Hyeong;Kim, Ho-Youn;Kim, Hyoung Seok;Jung, Sang Hoon
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.312-320
    • /
    • 2020
  • Background: Ginseng (Panax ginseng Meyer) is an essential source of pharmaceuticals and functional foods. Ginseng productivity has been compromised by high light (HL) stress, which is one of the major abiotic stresses during the ginseng cultivation period. The genetic improvement for HL tolerance in ginseng could be facilitated by analyzing its genetic and molecular characteristics associated with HL stress. Methods: Genome-wide analysis of gene expression was performed under HL and recovery conditions in 1-year-old Korean ginseng (P. ginseng cv. Chunpoong) using the Illumina HiSeq platform. After de novo assembly of transcripts, we performed expression profiling and identified differentially expressed genes (DEGs). Furthermore, putative functions of identified DEGs were explored using Gene Ontology terms and Kyoto Encyclopedia of Genes and Genome pathway enrichment analysis. Results: A total of 438 highly expressed DEGs in response to HL stress were identified and selected from 29,184 representative transcripts. Among the DEGs, 326 and 114 transcripts were upregulated and downregulated, respectively. Based on the functional analysis, most upregulated and a significant number of downregulated transcripts were related to stress responses and cellular metabolic processes, respectively. Conclusion: Transcriptome profiling could be a strategy to comprehensively elucidate the genetic and molecular mechanisms of HL tolerance and susceptibility. This study would provide a foundation for developing breeding and metabolic engineering strategies to improve the environmental stress tolerance of ginseng.

Comparison of Gene Expression Changes in Three Wheat Varieties with Different Susceptibilities to Heat Stress Using RNA-Seq Analysis

  • Myoung Hui Lee;Kyeong-Min Kim;Wan-Gyu Sang;Chon-Sik Kang;Changhyun Choi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.197-197
    • /
    • 2022
  • Wheat is highly susceptible to heat stress, which significantly reduces grain yield. In this study, we used RNA-seq technology to analyze the transcript expression at three different time-points after heat treatment in three cultivars differing in their susceptibility to heat stress: Jopum, Keumkang, and Olgeuru. A total of 11,751, 8850, and 14,711; 10,959,7946, and 14,205; and 22,895,13,060, and 19,408 differentially-expressed genes (log2 fold-change > 1 and FDR (padj) < 0.05) were identified in Jopum, Keumkang, and Olgeuru in the control vs. 6-h, in the control vs. 12-h, and in the 6-h vs. 12-h heat treatment, respectively. Functional enrichment analysis showed that the biological processes for DEGs, such as the cellular response to heat and oxidative stress-and including the removal of superoxide radicals and the positive regulation of superoxide dismutase activity-were significantly enriched among the three comparisons in all three cultivars. Furthermore, we investigated the differential expression patterns of reactive oxygen species (ROS)-scavenging enzymes, heat shock proteins, and heat-stress transcription factors using qRT-PCR to confirm the differences in gene expression among the three varieties under heat stress. This study contributes to a better understanding of the wheat heat-stress response at the early growth stage and the varietal differences in heat tolerancea.

  • PDF

Optimum Design of Bonding Pads for Prevention of Passivation Damage in Semiconductor Devices Utilizing Lead-on-Chip (LOC) Die Attach Technique (리드 온 칩 패키징 기술을 이용하여 조립된 반도체 제품에서 패시베이션 파손을 막기 위한 본딩패드의 합리적 설계)

  • Lee, Seong-Min;Kim, Chong-Bum
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.69-73
    • /
    • 2008
  • This article shows that the susceptibility of the device pattern to thermal stress-induced damage has a strong dependence on its proximity to the device comer in semiconductor devices utilizing lead-on-chip (LOC) die attach technique. The result, as explained based on numerical calculation and experiment, indicateds that the stress-driven damage potential of the passivation layer is the highest at the device comer. Thus, the bonding pads, which are very susceptible to passivation damage, should be designed to be located along the central region rather than the peripheral region of the device.

  • PDF

An Investigation of Stress Corrosion Cracking Charactistics of SUS 304 Stainless Steel in $MgCl_2$ Aqueous Solution ($MgCl_2$ 수용액 중에서 SUS 304강의 SCC 특성에 관한 연구)

  • 임우조
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.2
    • /
    • pp.133-136
    • /
    • 1984
  • The characteristics of the stress corrosion cracking of SUS 304 stainless steel were studied with the specimens of the constant displacement type under the environment of various MgCl sub(2) aqueous solutions. Main results obtained are as follows; 1) Latent time of crack initiations is delayed in the SCC under low condition of initial stress intensity K sub(Ii) value. 2) SCC occurs owing to the passive film-rupture by both load and Cl ion under MgCl sub(2) boiled aqueous solution. 3) The susceptibility of SCC can be largely improved by reducing the temperature in case of the high concentration of MgCl sub(2) aqueous solution.

  • PDF

SUSCEPTIBILITY OF ALLOY 690 TO STRESS CORROSION CRACKING IN CAUSTIC AQUEOUS SOLUTIONS

  • Kim, Dong-Jin;Kim, Hong Pyo;Hwang, Seong Sik
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.67-72
    • /
    • 2013
  • Stress corrosion cracking (SCC) behaviors of Alloy 690 were studied in lead-containing aqueous alkaline solutions using the slow strain rate tension (SSRT) tests in 0.1M and 2.5M NaOH with and without PbO at $315^{\circ}C$. The side and fracture surfaces of the alloy were then examined using scanning electron microscopy after the SSRT test. Microstructure and composition of the surface oxide layer were analyzed by using a field emission transmission electron microscopy, equipped with an energy dispersive X-ray spectroscopy. Even though Alloy 690 was almost immune to SCC in 0.1M NaOH solution, irrespective of PbO addition, the SCC resistance of Alloy 690 decreased in a 2.5M NaOH solution and further decreased by the addition of PbO. Based on thermodynamic stability and solubility of oxide, high Cr of 30wt% in the Alloy 690 is favorable to SCC in mild alkaline and acidic solutions whereas the SCC resistance of high Cr Alloy 690 is weakened drastically in the strong alkaline solution where the oxide is not stable any longer and solubility is too high to form a passive oxide locally.

Investigating the Cause of Hindrance to the Interfacial Bonding of INCONEL 718 Layer Deposited by Kinetic Spray Process (저온 분사 공정을 이용해 적층된 INCONEL 718의 계면접합 저해요인 분석)

  • Kim, Jaeick;Lee, Seungtae;Lee, Changhee
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.275-282
    • /
    • 2015
  • The cost for maintenance (replacement cost) of Ni-superalloy components in plant industry is very expensive because of high unit price of INCONEL 718. A development of repairing technology using kinetic spray process can be very helpful for reducing the maintenance cost. However, it is very difficult to produce well-deposited INCONEL 718 layer showing high interfacial bond strength via kinetic spraying. Thus, INCONEL 718 was deposited on SCM 440 substrate and the interfacial properties were investigated, in order to elucidate the cause of hindrance to the bonding between INCONEL 718 layer and SCM 440 substrate. As a result, it was revealed that the dominant obstacle to the interfacial bonding was excessive compressive residual stress accumulated in the coating layer, resulting from low plastic-deformation susceptibility of INCONEL 718. Nevertheless, the bonding state was enhanced by the post heat-treatment through relieving the residual stress and generating a diffusion/metallurgical bonding between the INCONEL 718 deposit and SCM 440 substrate.

LSD1-S112A exacerbates the pathogenesis of CSE/LPS-induced chronic obstructive pulmonary disease in mice

  • Jeong, Jiyeong;Oh, Chaeyoon;Kim, Jiwon;Yoo, Chul-Gyu;Kim, Keun Il
    • BMB Reports
    • /
    • v.54 no.10
    • /
    • pp.522-527
    • /
    • 2021
  • Lysine-specific demethylase 1 (LSD1) is an epigenetic regulator that modulates the chromatin status, contributing to gene activation or repression. The post-translational modification of LSD1 is critical for the regulation of many of its biological processes. Phosphorylation of serine 112 of LSD1 by protein kinase C alpha (PKCα) is crucial for regulating inflammation, but its physiological significance is not fully understood. This study aimed to investigate the role of Lsd1-S112A, a phosphorylation defective mutant, in the cigarette smoke extract/LPS-induced chronic obstructive pulmonary disease (COPD) model using Lsd1SA/SA mice and to explore the potential mechanism underpinning the development of COPD. We found that Lsd1SA/SA mice exhibited increased susceptibility to CSE/LPS-induced COPD, including high inflammatory cell influx into the bronchoalveolar lavage fluid and airspace enlargement. Additionally, the high gene expression associated with the inflammatory response and oxidative stress was observed in cells and mice containing Lsd1-S112A. Similar results were obtained from the mouse embryonic fibroblasts exposed to a PKCα inhibitor, Go6976. Thus, the lack of LSD1 phosphorylation exacerbates CSE/LPS-induced COPD by elevating inflammation and oxidative stress.

Analytical Evaluation of Residual Stresses in Dissimilar Metal Weld for Cast Stainless Steel Pipe and Low-Alloy Steel Component Nozzle (스테인리스주강 배관과 저합금강 기기노즐 이종금속용접부 잔류응력의 해석적 평가)

  • Park, June-Soo;Song, Min-Seop;Kim, Jong-Soo;Kim, In-Yong;Yang, Jun-Seog
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.100-100
    • /
    • 2009
  • This paper is concerned with numerical analyses of residual stresses in welds and material's susceptibility to stress corrosion cracking (SCC) for the primary piping system in nuclear power plants: Both the dissimilar metal weld (DMW) for stainless steel to low alloy steel joints and the similar metal weld (SMW) for forged stainless steel to cast stainless steel joints are considered. Thermal elasto-plastic analyses using the finite element method (FEM) are performed to predict residual stresses generated in fabrication welding and its related processes for both the DMW and SMW, including effects of quenching for cast stainless steel piping, machining of the DMW root, and grinding of the SMW root. As a result, the effect of quenching should be included in the evaluation of residual stresses in the SMW for the cast stainless steel piping. It is deemed that residual stresses in both the DMW and SMW would not affect the SCC susceptibility of the welds providing that the welding processes are completed without any weld repair on the inside wall of the joint. However, the grinding process if performed on the safe-end to piping weld, would produce a high level of residual stresses in the inner surface region and thus a stress improvement process (e.g. buffing) should be considered to reduce susceptibilities to SCC.

  • PDF

Overexpression of a Pathogenesis-Related Protein 10 Enhances Biotic and Abiotic Stress Tolerance in Rice

  • Wu, Jingni;Kim, Sang Gon;Kang, Kyu Young;Kim, Ju-Gon;Park, Sang-Ryeol;Gupta, Ravi;Kim, Yong Hwan;Wang, Yiming;Kim, Sun Tae
    • The Plant Pathology Journal
    • /
    • v.32 no.6
    • /
    • pp.552-562
    • /
    • 2016
  • Pathogenesis-related proteins play multiple roles in plant development and biotic and abiotic stress tolerance. Here, we characterize a rice defense related gene named "jasmonic acid inducible pathogenesis-related class 10" (JIOsPR10) to gain an insight into its functional properties. Semi-quantitative RT-PCR analysis showed up-regulation of JIOsPR10 under salt and drought stress conditions. Constitutive over-expression JIOsPR10 in rice promoted shoot and root development in transgenic plants, however, their productivity was unaltered. Further experiments exhibited that the transgenic plants showed reduced susceptibility to rice blast fungus, and enhanced salt and drought stress tolerance as compared to the wild type. A comparative proteomic profiling of wild type and transgenic plants showed that overexpression of JIOsPR10 led to the differential modulation of several proteins mainly related with oxidative stresses, carbohydrate metabolism, and plant defense. Taken together, our findings suggest that JIOsPR10 plays important roles in biotic and abiotic stresses tolerance probably by activation of stress related proteins.

Analysis of Gene-specific Molecular Markers for Biotic and Abiotic Stress Resistance in Tropically adapted Japonica Rice Varieties

  • Jung-Pil Suh;Sung-Ryul Kim;Sherry Lou Hechanova;Marianne Hagan;Graciana Clave;Myrish Pacleb
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.292-292
    • /
    • 2022
  • Since 1992, the Rural Development Administration (RDA), Republic of Korea in collaboration with International Rice Research Institute (IRRI) has developed 6 japonica rice varieties(MS11, Japonica 1, 2, 6, 7 and Cordillera 4) that are adaptable to tropical regions. However, these varieties show moderate resistance or susceptibility to certain biotic and abiotic stress. The development of varieties with more stable forms of resistance is highly desirable, and this could be possibly achieved through rapid introgression of known biotic and abiotic resistant genes. In this study, we analyzed the allele types of major biotic stress resistant genes including Xa5, Xa13, Xa21 and Xa25 for bacterial leaf blight, Pi5, Pi40, Pish and Pita2 for blast, tsv1 for rice tungro spherical virus, and Bph6, Bph9, Bph17, Bph18 and Bph32 for brown planthopper by using gene-specific molecular markers. In addition, seed quality related genes Sdr4 for preharvest sprouting and qLG-9 for seed longevity were also analyzed. The results revealed that2h5 and Xa25 resistance alleles showed in all varieties while Pi5 resistance allele showed only in MS11. The Pish resistance allele were present in five varieties except for Japonica 1. Meanwhile, for the rest of the genes, no presence of resistance alleles found in six varieties. In conclusions, most of tropical japonica varieties are lack of the major biotic stress resistant genes and seed quality genes (Sdr4 and qLG-9). Moreover, the results indicated that rapid deployment of a few major genes in the current tropical japonica rice varieties is urgent to increase durability and spectrum of biotic stress resistance and also seed dormancy/longevity which are essential traits for tropical environments.

  • PDF