• Title/Summary/Keyword: Stress Physiology

Search Result 725, Processing Time 0.032 seconds

Berberine alleviates symptoms of anxiety by enhancing dopamine expression in rats with post-traumatic stress disorder

  • Lee, Bombi;Shim, Insop;Lee, Hyejung;Hahm, Dae-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.183-192
    • /
    • 2018
  • Post-traumatic stress disorder (PTSD) is a trauma-induced psychiatric disorder characterized by impaired fear extermination, hyperarousal, anxiety, depression, and amnesic symptoms that may involve the release of monoamines in the fear circuit. The present study measured several anxiety-related behavioral responses to examine the effects of berberine (BER) on symptoms of anxiety in rats after single prolonged stress (SPS) exposure, and to determine if BER reversed the dopamine (DA) dysfunction. Rats received BER (10, 20, or 30 mg/kg, intraperitoneally, once daily) for 14 days after SPS exposure. BER administration significantly increased the time spent in the open arms and reduced grooming behavior during the elevated plus maze test, and increased the time spent in the central zone and the number of central zone crossings in the open field test. BER restored neurochemical abnormalities and the SPS-induced decrease in DA tissue levels in the hippocampus and striatum. The increased DA concentration during BER treatment may partly be attributed to mRNA expression of tyrosine hydroxylase and the DA transporter in the hippocampus, while BER exerted no significant effects on vesicular monoamine transporter mRNA expression in the hippocampus of rats with PTSD. These results suggest that BER had anxiolytic-like effects on behavioral and biochemical measures associated with anxiety. These findings support a role for reduced anxiety altered DAergic transmission and reduced anxiety in rats with PTSD. Thus, BER may be a useful agent to treat or alleviate psychiatric disorders like those observed in patients with PTSD.

Tetramethylpyrazine reverses anxiety-like behaviors in a rat model of post-traumatic stress disorder

  • Lee, Bombi;Shim, Insop;Lee, Hyejung;Hahm, Dae-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.5
    • /
    • pp.525-538
    • /
    • 2018
  • Post-traumatic stress disorder (PTSD) is a trauma-induced psychiatric disorder characterized by impaired fear extermination, hyperarousal, and anxiety that may involve the release of monoamines in the fear circuit. The reported pharmacological properties of tetramethylpyrazine (TMP) include anti-cancer, anti-diabetic, anti-atherosclerotic, and neuropsychiatric activities. However, the anxiolytic-like effects of TMP and its mechanism of action in PTSD are unclear. This study measured several anxiety-related behavioral responses to examine the effects of TMP on symptoms of anxiety in rats after single prolonged stress (SPS) exposure by reversing the serotonin (5-HT) and hypothalamic-pituitary-adrenal (HPA) axis dysfunction. Rats were given TMP (10, 20, or 40 mg/kg, i.p.) for 14 days after SPS exposure. Administration of TMP significantly reduced grooming behavior, increased the time spent and number of visits to the open arm in the elevated plus maze test, and significantly increased the number of central zone crossings in the open field test. TMP administration significantly reduced the freezing response to contextual fear conditioning and significantly restored the neurochemical abnormalities and the SPS-induced decrease in 5-HT tissue levels in the prefrontal cortex and hippocampus. The increased 5-HT concentration during TMP treatment might be partially attribute to the tryptophan and 5-hydroxyindoleacetic acid mRNA level expression in the hippocampus of rats with PTSD. These findings support a role for reducing the altered serotonergic transmission in rats with PTSD. TMP simultaneously attenuated the HPA axis dysfunction. Therefore, TMP may be useful for developing an agent for treating psychiatric disorders, such those observed in patients with PTSD.

The Mechanism of t-Butylhydroperoxide-Induced Apoptosis in IMR-32 Human Neuroblastoma Cells

  • Kim, Jung-Ae;Lee, Yong-Soo;Huh, Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.1
    • /
    • pp.19-27
    • /
    • 1999
  • Apoptosis has been implicated in the pathophysiological mechanisms of various neurodegenerative diseases. In a variety of cell types, oxidative stress has been demonstrated to play an important role in the apoptotic cell death. However, the exact mechanism of oxidative stress-induced apoptosis in neuronal cells is not known. In this study, we induced oxidative stress in IMR-32 human neuroblastoma cells with tert- butylhydroperoxide (TBHP), which was confirmed by significantly reduced glutathione content and glutathione reductase activity, and increased glutathione peroxidase activity. TBHP induced decrease in cell viability and increase in DNA fragmentation, a hallmark of apoptosis, in a dose-dependent manner. TBHP also induced a sustained increase in intracellular $Ca^{2+}$ concentration, which was completely prevented either by EGTA, an extracellular $Ca^{2+}$ chelator or by flufenamic acid (FA), a non-selective cation channel (NSCC) blocker. These results indicate that the TBHP-induced intracellular $Ca^{2+}$ increase may be due to $Ca^{2+}$ influx through the activation of NSCCs. In addition, treatment with either an intracellular $Ca^{2+}$ chelator (BAPTA/AM) or FA significantly suppressed the TBHP-induced apoptosis. Moreover, TBHP increased the expression of p53 gene but decreased c-myc gene expression. Taken together, these results suggest that the oxidative stress-induced apoptosis in neuronal cells may be mediated through the activation of intracellular $Ca^{2+}$ signals and altered expression of p53 and c-myc.

  • PDF

Alternative Isoforms of TonEBP with Variable N-termini are Expressed in Mammalian Cells

  • Kim, Hyo-Shin;Son, Sook-Jin;Kim, Seon-Nyo;Kim, Yong-Duk;Kim, Kwang-Jin;Jeon, Byeong-Hwa;Park, Jin-Bong;Lee, Sang-Do
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.3
    • /
    • pp.135-138
    • /
    • 2007
  • Hypertonicity imposes a great deal of stress to cells since it causes rise in cellular ionic strength, which can be reduced by the accumulation of compatible osmolytes. TonEBP plays a central role in the cellular accumulation of compatible osmolytes via transcriptional stimulation of membrane transporters and aldose reductase. Alternatively spliced forms of TonEBP mRNA have previously been reported and two of them showed different transcriptional activity. In the present study, isoform-specific antibodies were produced to confirm the translation of the spliced mRNA to protein. TonEBP was immunoprecipitated by using anti-TonEBP antibody and then immunoblotted using anti-TonEBP or isoform specific antibodies to find out the expression profile of TonEBP isoforms in basal or stimulated condition. From these results, we conclude that all TonEBP isoforms are expressed in mammalian cells and their expression patterns are not same in every cells.

Starvation Induced Changes of Some Biomolecules in Eggs and Hatched Larvae of Indigenous Strain of Bombyx mori (Lepidoptera : Bombycidae)

  • Chaudhuri, A.;Krishnan, N.;Roy, G.C.;Sengupta, A.K.;Sen, S.K.;Saratchandra, B.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.2 no.2
    • /
    • pp.107-110
    • /
    • 2001
  • Variations in protein and nucleic acid concentrations were observed in 24 hrs old eggs and hatched larvae of Nistari strain, Bombyx mori, exposed to starvation. Three starvation treatments of 24,48 and 60 hrs were given separately from 0 hr old fifth instar larvae. Biochemical variations were studied in the resultant hatched larvae of one time starved parent, while the eggs obtained from parents receiving starvation in two successive generations were considered for the study. In hatched larvae, protein levers in 24 hrs starvation groups remained significantly higher over control (never starved) while the same was found to be lower in 48 and 60 hrs starvation individuals. The RNA concentration remained significantly higher in all the treated lots. However, DNA content was not found to be significantly altered in hatched larvae after exposure to feeding stress. Protein, RNA and DNA concentration of 24 hrs old eggs produced by all the starved groups of Nistari, which had deceived two consecutive starvation during parental generations, showed higher concentrations of these biomolecules over control. Hence, starvation induced alterations in protein and nucleic acids in eggs and hatched Iarvae are indicative of a preparatory phase adopted by the insect to acclimatise itself and its progeny to stress situations.

  • PDF

Effect of heat stress on growth performance and blood profiles in finishing pigs

  • Kim, Byeonghyeon;Kim, Hye Ran;Kim, Ki Hyun;Kim, Minji;Baek, Youl-Chang;Lee, Sung Dae;Jeong, Jin Young
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.683-691
    • /
    • 2020
  • A biomarker is needed to monitor and manage the health of pigs from heat stress (HS). Therefore, we investigated the effects of HS on growth performance, nutrient digestibility, and blood profiles in finishing pigs. A total of 12 finishing pigs (n = 12) were raised in thermal neutral (TN; 25℃) conditions for a 3-d adaptation period. After the adaption, 6 pigs were exposed to HS at 33℃ (HS33) for 5 d. The pigs were fed the same diet based on corn and soybean meal. Chromic oxide was added to all the diets at a level of 2 g·kg-1 as an indigestible marker for the determination of the apparent total track digestibility (ATTD) of nutrients and amino acids. Blood samples were collected after the adaptation and heat treatment to verify the blood profiles. The HS33 pigs had a lower (p < 0.01) average daily feed intake (ADFI) and higher (p < 0.05) rectal temperature compared to the TN pigs. However, there was no difference in the ATTD of nutrients and amino acids. The HS33 pigs had reduced (p < 0.05) levels of serum glucose, non-esterified fatty acids (NEFA), total protein, albumin, and calcium compared to the TN pigs. However, the level of total bilirubin was increased (p < 0.05) in the HS pigs. In conclusion, HS reduced the feed intake and had an adverse effect on health. Altered blood profiles as a result of a negative energy balance are expected to be biomarkers of HS in finishing pigs.

Hyposmotic Cell Stretch Increases L-type Calcium Current in Smooth Muscle Cells of the Human Stomach

  • Kang, Tong-Mook;Kim, Chun-Hee;Kim, Min-Jung;Park, Myoung-Kyu;Uhm, Dae-Yong;Rhee, Jong-Chul;Rhee, Poong-Lyul
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1998.06a
    • /
    • pp.39-39
    • /
    • 1998
  • Stretch-activated ion channel that is open by mechanical stress applied on the cell membrane is one of the classes of ion channels. Other than stretch-activated channel itself, it has been also reported that a variety of ion channels could be modulated by a mechanical cell stretch.(omitted)

  • PDF

Effects of acute heat stress on salivary metabolites in growing pigs: an analysis using nuclear magnetic resonance-based metabolomics profiling

  • Kim, Byeonghyeon;Kim, Hye Ran;Kim, Ki Hyun;Ji, Sang Yun;Kim, Minji;Lee, Yookyung;Lee, Sung Dae;Jeong, Jin Young
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.319-331
    • /
    • 2021
  • Heat stress (HS) causes adverse impacts on pig production and health. A potential biomarker of HS is required to predict its occurrence and thereby better manage pigs under HS. Information about the saliva metabolome in heat-stressed pigs is limited. Therefore, this study was aimed to investigate the effects of acute HS on the saliva metabolome and identify metabolites that could be used as potential biomarkers. Growing pigs (n = 6, 3 boars, and 3 gilts) were raised in a thermal neutral (TN; 25℃) environment for a 5-d adaptation period (CON). After adaptation, the pigs were first exposed to HS (30℃; HS30) and then exposed to higher HS (33℃; HS33) for 24 h. Saliva was collected after adaptation, first HS, and second HS, respectively, for metabolomic analysis using 1H-nuclear magnetic resonance spectroscopy. Four metabolites had significantly variable importance in the projection (VIP > 1; p < 0.05) different levels in TN compared to HS groups from all genders (boars and gilts). However, sex-specific characteristics affected metabolites (glutamate and leucine) by showing the opposite results, indicating that HS was less severe in females than in males. A decrease in creatine levels in males and an increase in creatine phosphate levels in females would have contributed to a protective effect from protein degradation by muscle damage. The results showed that HS led to an alteration in metabolites related to energy and protein. Protection from muscle damage may be attributed to the alteration in protein-related metabolites. However, energy-related metabolites showed opposing results according to sex-specific characteristics, such as sex hormone levels and subcutaneous fat layer. This study had shown that saliva samples could be used as a noninvasive method to evaluate heat-stressed pigs. And the results in this study could be contributed to the development of a diagnostic tool as a noninvasive biomarker for managing heat-stressed pigs.

Effect of the Inhibition of PLA2 on Oxidative Lung Injury Induced by $Interleukin-1{\alpha}$

  • Lee, Young-Man;Cho, Hyun-Gug;Park, Yoon-Yub;Kim, Jong-Ki;Lee, Yoon-Jeong;Park, Won-Hark;Kim, Teo-An
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.5
    • /
    • pp.617-628
    • /
    • 1998
  • In order to understand the pathogenetic mechanism of adult respiratory distress syndrome (ARDS), the role of phospholipase A2 (PLA2) in association with oxidative stress was investigated in rats. $Interleukin-1{\alpha}\;(IL-1,\;50\;{\mu}g/rat)$ was used to induce acute lung injury by neutrophilic respiratory burst. Five hours after IL-1 insufflation into trachea, microvascular integrity was disrupted, and protein leakage into the alveolar lumen was followed. An infiltration of neutrophils was clearly observed after IL-1 treatment. It was the origin of the generation of oxygen radicals causing oxidative stress in the lung. IL-1 increased tumor necrosis factor (TNF) and cytokine-induced neutrophil chemoattractant (CINC) in the bronchoalveolar lavage fluid, but mepacrine, a PLA2 inhibitor, did not change the levels of these cytokines. Although IL-1 increased PLA2 activity time-dependently, mepacrine inhibited the activity almost completely. Activation of PLA2 elevated leukotriene C4 and B4 (LTC4 and LTB4), and 6-keto-prostaglandin $F2{\alpha}\;(6-keto-PGF2{\alpha})$ was consumed completely by respiratory burst induced by IL-1. Mepacrine did not alter these changes in the contents of lipid mediators. To estimate the functional changes of alveolar barrier during the oxidative stress, quantitative changes of pulmonary surfactant, activity of gamma glutamyltransferase (GGT), and ultrastructural changes were examined. IL-1 increased the level of phospholipid in the bronchoalveolar lavage (BAL) fluid, which seemed to be caused by abnormal, pathological release of lamellar bodies into the alveolar lumen. Mepacrine recovered the amount of surfactant up to control level. IL-1 decreased GGT activity, while mepacrine restored it. In ultrastructural study, when treated with IL-1, marked necroses of endothelial cells and type II pneumocytes were observed, while mepacrine inhibited these pathological changes. In histochemical electron microscopy, increased generation of oxidants was identified around neutrophils and in the cytoplasm of type II pneumocytes. Mepacrine reduced the generation of oxidants in the tissue produced by neutrophilic respiratory burst. In immunoelectron microscopic study, PLA2 was identified in the cytoplasm of the type II pneumocytes after IL-1 treatment, but mepacrine diminished PLA2 particles in the cytoplasm of the type II pneumocyte. Based on these experimental results, it is suggested that PLA2 plays a pivotal role in inducing acute lung injury mediated by IL-1 through the oxidative stress by neutrophils. By causing endothelial damage, functional changes of pulmonary surfactant and alveolar type I pneumocyte, oxidative stress disrupts microvascular integrity and alveolar barrier.

  • PDF

Duration of Drought Stress Effects on Soybean Growth Characteristic and Seed Yield Distribution Patterns (한발 기간에 따른 콩의 생육 특성과 수량 분배 양상)

  • Lee, Yun-Ho;Sang, Wan-Gyu;Cho, Jung-Il;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.269-276
    • /
    • 2019
  • A semi-greenhouse experiment with field grown soybean (Glycine max L. cv Deawon, Uram, Jinpong, Soyon, Pungsangnamul, and Haewon) was performed in 2018. The experiment was aimed to investigate individual impacts of drought stress on soybean characteristic and seed yield. The three treatments were used in non-water stress (Control) during the soybean growth season, vegetative stage stress (VS), and flowering period stress (FS). Leaf number, LAI, leaf nitrogen concentration, and leaf biomass were decreased by drought at R4. In our study, the number of pods was 33.6% and 40.5% lower, respectively, in control than in VS and FS. In 100 seed weight, was 16.1% and 10.1% lower, respectively, in control than in VS and FS at R8. As a result, seed yield was 39.8% and 45.1% lower, respectively, in control than in VS and FS. Depending on the drought period, Daewon and Haewon showed a large decrease in yield, while Soyon did not change. The results of this study showed that flower and beginning pod setting stage responded more sensitively to the drought period than vegetative stage. Overall, these results demonstrate soybean seed yield formation more sensitive the during the flowing and beginning pod setting stage. We conclude that adequate water supply for pod setting stage, guaranteeing a high seed yield.