• Title/Summary/Keyword: Stress Intensity factors

Search Result 579, Processing Time 0.029 seconds

FEM Analysis on Rolling Contact Fatigue Crack of a Railway Wheel (철도 차륜의 구름접촉 피로 균열에 관한 유한요소해석)

  • Kim, Ho-Kyung;Yang, Kyoung-Tak;Kim, Hyun-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.2 s.80
    • /
    • pp.8-14
    • /
    • 2007
  • In this study, tensile and fatigue crack propagation tests machined from actual wheels were performed. FEM analysis also was performed on the crack that was assumed to be 15 mm in depth under the wheel tread surface. The stress intensity factors K I and K II at the crack tip under the stress($P_{max}=911.5MPa$) due to a rolling contact were analyzed for crack growth characteristics. As a result, the perpendicular crack was found to be more dangerous compared to the parallel one. It is found that in the wheel fatigue crack, parallel to the wheel tread surface, the crack with its length 2a = 2.4mm starts to propagate due to the fact that the effective stress intensity factor access to the threshold stress intensity factor($K_{th}=16.04MPa{\sqrt{m}}$) of the wheel.

Teaching English Stress Using a Drum: Based on Phonetic Experiments

  • Yi, Do-Kyong
    • English Language & Literature Teaching
    • /
    • v.15 no.2
    • /
    • pp.261-280
    • /
    • 2009
  • This study focuses on providing the pedagogical implications of stress in English pronunciation teaching since stress is one the most important characteristic factors in English pronunciation (Bolinger, 1976; Brown, 1994; Celce-Murcia, Brinton & Goodwin, 1996; Kreidler, 1989). The author investigated stress production regarding in terms of duration, pitch, and intensity by a group of native speakers of English and a group of low-proficiency South Kyungsang Korean college students for their pre-test. For both of the pre- and post-test, the same stimuli, which consisted of a one-syllable word, two two-syllable words, three three-syllable words, and three four-syllable words, were used along with the various sentence positions: isolation, initial, medial, and final. Soft ware programs, ALVIN and Praat, were used to record and analyze the data. Since Celce-Murcia et al. (1996), Klatt (1975), and Ladefoged (2001) treat duration of the stressed syllable more significantly than other factors, pitch and intensity, with respect to the listener's point of view, the author developed a special method of teaching English stress using a traditional Korean drum to emphasize duration. In addition, the results from the native speakers' production showed that their main strategy to realize stress was through lengthening stressed syllables. After six weeks of stress instruction using the drum, the production of the native speakers and the SK Korean participants from the pre- and post-test were compared. The results from the post-test indicated that the participants showed great improvement not only in duration but also in pitch after the stress instruction. Pitch improvement was unexpected but well-explained by the statement that long vowels receive accent in loan word adaptation in North Kyungsang Korean. The results also showed that the Korean participants' pitch values became more even in their duration values for each syllable as the structure of the word or the sentence became more complex, due to their dependency upon their L1.

  • PDF

Fracture mechanical evaluation of fatigue strength of a single spot welded lap joint under tension-shear load (인장-전단하중을 받는 일점 Spot용접재의 파괴역학적 피로강도 평가)

  • 배동호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.42-50
    • /
    • 1991
  • According as the members and inner and outer plates of the automobile body structure have been thinned their thickness and have become high strength, each part of the body structure has been put more severe stress condition. Therefore, it has been increasingly required to improve the fatigue strength of the spot welded structures. As one of the improving methods for such problem, the author had previously proposed the method of alleviating stress concentration at nugget edge of the spot weld part and improving its fatigue strength [1]. But, because fatigue strength of the spot welded lap joint is influenced by its geometrical and mechanical factors, welding condition and etc., there needs a quantitative and systematic estimation method of them. In this report, by considering nugget edge of the spot weld part of the spot welded lap joint subjected to tensile load to the ligament crack, fatigue strength of various spot welded lap joints was estimated with the stress intensity factor (S.I.F.) K which is fracture mechanical parameter. It is known that evaluation of fatigue strength of the spot welded lap joint by the stress intensity factor (S.I.F.) K is more effective than the maximum stress $(\sigma_{ymax}$) at edge of the spot weld part on the center line of width of the plate.

  • PDF

Elastodynamic Response of a Crack Perpendicular to the Graded Interfacial Zone in Bonded Dissimilar Materials Under Antiplane Shear Impact

  • Kim, Sung-Ho;Choi, Hyung-Jip
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1375-1387
    • /
    • 2004
  • A solution is given for the elastodynamic problem of a crack perpendicular to the graded interfacial zone in bonded materials under the action of anti plane shear impact. The interfacial zone is modeled as a nonhomogeneous interlayer with the power-law variations of its shear modulus and mass density between the two dissimilar, homogeneous half-planes. Laplace and Fourier integral transforms are employed to reduce the transient problem to the solution of a Cauchy-type singular integral equation in the Laplace transform domain. Via the numerical inversion of the Laplace transforms, the values of the dynamic stress intensity factors are obtained as a function of time. As a result, the influences of material and geometric parameters of the bonded media on the overshoot characteristics of the dynamic stress intensities are discussed. A comparison is also made with the corresponding elastostatic solutions, addressing the inertia effect on the dynamic load transfer to the crack tips for various combinations of the physical properties.

A Study on Fracture Criterion of PMMA Plates Having a V-Notch with an End Hole (단공 (端孔) V-노치가 있는 PMMA 판의 파괴기준에 관한 연구)

  • Choo, Won Chul;Cho, Sang Bong;Yun, Jon Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.865-873
    • /
    • 2016
  • The aim of this study was to examine the validity of fracture criterion for PMMA plates that have a V-notch with an end hole. The predicted stress intensity factors and crack initiation angles by the fracture criterion based on the maximum circumferential stress and the novozhilov's criteria were compared with the experimental results. By increasing the radius of end hole, the differences of predicted stress intensity factors and experimental results increased, possibly due to the plastic zone size. The results indicated that when the radius of end hole is < 1 mm, the fracture criterion would be useful.

Mechanical Behavior of Fiber Metal Laminates with Local Delamination Defects (국부적 적층분리결함을 갖는 섬유금속적층판의 기계적 거동 특성)

  • Choi, Heungsoap;Choi, Hyungjip;Choi, Wonjong;Ha, Minsu
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.25-35
    • /
    • 2007
  • In this paper, the interlaminar crack problems of a fiber metal laminate (FML) under generalized plane deformation are studied using the theory of anisotropic elasticity. The crack is considered to be embedded in the matrix interlaminar region (including adhesive zone and resin rich zone) of the FML. Based on Fourier integral transformation and the stress matrix formulation, the current mixed boundary value problem is reduced to solving a system of Cauchy-type singular integral equations of the 1st kind. Within the theory of linear fracture mechanics, the stress intensity factors are defined on terms of the solutions of integral equations and numerical results are obtained for in-plane normal (mode I) crack surface loading. The effects of location and length of crack in the 3/2 and 2/1 ARALL, GLARE or CARE type FML's on the stress intensity factors are illustrated.

  • PDF

Energy Release Rates for a Dynamically Growing Crack in Orthotropic Materials (직교이방체에서 동적성장하는 균열에 대한 에너지해방률)

  • 주석재
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1590-1596
    • /
    • 1995
  • The energy release rates for a dynamically growing crack in orthotropic materials are expressed explicitly in terms of dynamic stress intensity factors. The stress functions suitable for the problem are found and the evaluation of the J-integral for the theoretical singular crack tip fields yields energy release rates. The present results are simpler than the existing ones and can be reduced to the well known solutions in special cases. Examples of extracting stress intensity factors from the finite element solution using the present results are given for the dynamically growing crack problem of orthotropic materials.

Application of Weight Function Method to Elliptical Surface Cracks in Mechanical Joints (기계적 체결부에 존재하는 타원형 표면균열에 대한 가중함수법의 적용)

  • Heo, Sung-Pil;Yang, Won-Ho;Kim, Cheol;Hyun, Cheol-Seung;Ryu, Myung-Hai
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.165-170
    • /
    • 2000
  • The weight function method is an efficient technique to calculate the stress intensity factors for various loading conditions in that only the stress analysis of an uncracked model is required. This paper analyzes the mixed-mode stress intensity factors of surface and deepest points for quarter elliptical surface cracks in mechanical joints by weight function method and the coefficients included in weight function are determined by finite element analyses for reference loadings. Results for the different number of terms in weight function are presented.

  • PDF

Interlaminar stresses and delamination of composite laminates under extension and bending

  • Nguyen, Tien Duong;Nguyen, Dang Hung
    • Structural Engineering and Mechanics
    • /
    • v.25 no.6
    • /
    • pp.733-751
    • /
    • 2007
  • The metis element method (Hung 1978) has been applied to analyse free edge interlaminar stresses and delamination in composite laminates, which are subjected to extension and bending. The paper recalls Lekhnitskii's solution for generalized plane strain state of composite laminate and Wang's singular solution for determination of stress singularity order and of eigen coefficients $C_m$ for delamination problem. Then the formulae of metis displacement finite element in two-dimensional problem are established. Computation of the stress intensity factors and the energy release rates are presented in details. The energy release rate, G, is computed by Irwin's virtual crack technique using metis elements. Finally, results of interlaminar stresses, the three stress intensity factors and the energy release rates for delamination crack in composite laminates under extension and bending are illustrated and compared with the literature to demonstrate the efficiency of the present method.

A Fatigue Related Equation with Shape and Loading Factors Representing Effect of Thickness in Al 2024-T3 Alloy Sheet (판재 Al 2024-T3 합금재료의 두께효과를 나타내는 형상인자 및 하중인자에 의한 피로관계식)

  • Kim, Seung-Gwon;Lee, Ouk-Sub;Jang, Joo-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.141-146
    • /
    • 2012
  • Aluminum alloys have been used with various thicknesses suitable for light weight of structure. It is known that the thickness effect of material is an important factor affecting fatigue crack propagation under constant fatigue stress condition. In this work, we presented the behavior of fatigue crack propagation in thin plate compared to thick plate Al 2024-T3 alloy with referred thickness effect in a correlative equation determined by the shape factor and the loading factor. We chose two factors that are used in the correlative equation with considering that the experiments were carried out under a constant fatigue stress condition. The thickness ratio of thin plate compared to thick plate and the equivalent effective stress intensity factor ratio depending on thickness were chosen as shape and loading factors. A correlative equation is utilized to determine the equivalent effective stress intensity factor range of thin plate and identify the degree of increasing phenomenon of fatigue life in thin plate compared to thick plate.