• Title/Summary/Keyword: Stress Concentration factor

Search Result 372, Processing Time 0.028 seconds

Influence of Notch Change on Corrosion Fatigue Fracture in F.E.M. Dual phase Steel of SS41 Steel (SS41강의 F.E.M.복합조직강에서 노치변화가 부식피로파괴에 미치는 영향)

  • 도영민;이규천
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.44-50
    • /
    • 2001
  • The rotated bending fatigue test was conducted in air md in 3.5% NaCl salt solution to investigate the fatigue fracture behaviour of raw material and F.E.M dual phase steel made from raw material(SS41) by a suitable heat treatment. This study has compared the initial microcrack creation of material by tensile test with that by fatigue test. And the rotated bending test of cantilever type under the condition of 3.5% NaCl salt solution and air has investigated the corrosion fatigue fracture behaviour with the variation of stress concentration factor determined by each of notch shapes. The initial microcrack have been developed in fragile grainboundary with general corrosion occurring in raw material : in the pits built up by corrosion in F.E.M. dual phase steel because pits bring out stress concentration. It is small that the degree of decrease in corrosion fatigue life for F.E.M. dual phase steel compared with raw material because the notch sensitivity of F.E.M. dual phase steel is lower than raw material in reason of characteristics with two-phase construction.

  • PDF

Derivation of Elastic Stress Concentration Factor Equations for Debris Fretting Flaws in Pressure Tubes of Pressurized Heavy Water Reactors (가압중수로 압력관 이물질 프레팅 결함의 탄성 응력집중계수 수식 도출)

  • Kim, Jong Sung;Oh, Young Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.167-175
    • /
    • 2014
  • If volumetric flaws such as bearing pad fretting flaws and debris fretting flaws are detected in the pressure tubes of pressurized heavy water reactors during in-service inspection, the initiation of fatigue cracks and delayed hydrogen cracking from the detected volumetric flaws shall be assessed by using elastic stress concentration factors in accordance with CSA N285.8-05. The CSA N285.8-05 presents only an approximate formula based on linear elastic fracture mechanics for the debris fretting flaw. In this study, an engineering formula considering the geometric characteristics of the debris fretting flaw in detail was derived using two-dimensional finite element analysis and Kinectrics, Inc.'s engineering procedure with slight modifications. Comparing the application results obtained using the derived formula with the three-dimensional finite element analysis results, it is found that the results obtained using the derived formula agree well with the results of the finite element analysis.

A Numerical analysis of Underground Repository Cavern in Korean Crystalline rocks (우리나라 결정질암내 동굴처분장에 대한 수치해석)

  • 윤건신
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.68-84
    • /
    • 1991
  • A numerical analysis using Universal Distinct Element Code program for the nuclear waste disposal cavern has been performed for a typical Korean crystalline rock condition with same geometry of Swedish low and intermediate nuclear waste disposal repository(S.F.R). The stress concentration, displacement and safety factor for the typical single cross section of cavern, 5 caverns and a silo are analyzed.

  • PDF

Fatigue Assessment of High Strength Steel Welded Joints Under Bending Loading (굽힘 하중하의 고장력강 용접 연결부의 피로 평가)

  • Lee, Myeong-Woo;Kim, Yun-Jae;Park, Jun-Hyub
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1163-1169
    • /
    • 2014
  • In this study, a fatigue assessment method for vehicle suspension systems having welded geometries was established under a bending loading condition. For the fatigue life estimation of the actual product's welded joints made of different steels, bending fatigue tests were performed on welded specimens with a simplified shape for obtaining the moment-fatigue-life plot. Further, geometry modeling of the simplified welded specimens was conducted. Results of finite element analysis were used to obtain the stress-fatigue-life plot. The analysis results were also used to calculate the stress concentration factors for notch-factor-based fatigue life estimation. The test results were compared with results of the general notch-factor-based fatigue life estimation for improving fatigue assessment. As a result, it was concluded that both the welded fatigue tests and the notch-factor-based fatigue life estimation are necessary for accurate fatigue assessment.

A Study of the Thickness Effect using Structural Stress Approach for Fillet Welded Joints (구조 응력 기법을 적용한 필릿 용접부 두께 지수 산정에 관한 연구)

  • Xin, Wen-Jie;Oh, Dong-Jin;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.37-42
    • /
    • 2014
  • In this study, non-load-carrying fillet welded joints fabricated using EH grade-steel are evaluated with the structural stress approach. The thickness effect was investigated by a study on welded steel joints with thickness ranging from 25 to 80mm. As-welded joint for main plate thickness of 25 to 80mm, the fatigue strength is reduced gradually. On the other hand, in case of main plate thickness of 25 to 80mm, the structural stress concentration factor increases gradually. As a result, for structural stress approach, thickness effect is not required for correction. Based on these results, a new evaluation fillet welded joint for fatigue design purposes has been proposed FAT 125.

A Study on Fatigue Characteristics for Design Automation of TS-Type Spot Welded Lap Joint (TS형 박강판 용접 구조물의 자동화설계를 위한 피로특성에 관한 연구)

  • Yeb, Baek-Seung;Ho, Bae-Dong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.290-296
    • /
    • 2012
  • Cold-rolled carbon steel sheets are commonly used in railroad car or commercial vehicles such as the automobile. These are mainly fabricated by spot welding which is a kind of electric resistance welding. But fatigue strength of spot welding joint is lower than that of base metal due to high stress concentration at nugget edge of the spot welded part. And fatigue strength of them is especially influenced by not only geometrical and mechanical factors but also welding conditions of the spot welded joint. So for fatigue design of gas welded joints such as TS-type joints, it is necessary to obtain design information on stress distribution at the weldment as well as fatigue strength of spot welded joints. And also, the influence of the geometrical parameters of spot welded joints on stress distribution and fatigue strength must be evaluated. And analysis approach for fatigue test using design of experiment are evaluated optimum factor in TS-type welded joint and geometrical parameters of materials. Using these results, that factors applied to fundamental information for automation of fatigue design.

The 3-Dimensional Tunnel Analysis Considering Stress Concentration . Load Distribution Ratio (응력집중을 고려한 터널의 3차원 거동에 관한 연구 -하중분담률 중심으로)

  • 이인모;최항석
    • Geotechnical Engineering
    • /
    • v.12 no.1
    • /
    • pp.87-110
    • /
    • 1996
  • To simulate the three4imensional effect occurring near the tunnel face in a two -dimensional model, empirical load -dirtribution ratio concept is frequently used in tunnel design. In this paper, three -dimensional analysis is performed and its results are compared with those of two dimensional analysis'to investigate the applicability of the loadiistribution ratio concept. Especially, stress concentration near the tunnel face is investigated in depth. A parametric study is performed to investigate the effect of each factor on the load distribution ratio. The factors considered here include unsupported span length, initial stress, rock quality, tunnel size and the depth of tunnel location Moreover, the load -distribution ratios for the typical tunnel sections in Seoul Subway to be used in the tunnel design are suggested.

  • PDF

산소분압에 따른 IGZO 박막트랜지스터의 특성변화 연구

  • Han, Dong-Seok;Gang, Yu-Jin;Park, Jae-Hyeong;Yun, Don-Gyu;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.497-497
    • /
    • 2013
  • Semiconducting amorphous InGaZnO (a-IGZO) has attracted significant research attention as improved deposition techniques have made it possible to make high-quality a-IGZO thin films. IGZO thin films have several advantages over thin film transistors (TFTs) based on other semiconducting channel layers.The electron mobility in IGZO devices is relatively high, exceeding amorphous Si (a-Si) by a factor of 10 and most organic devices by a factor of $10^2$. Moreover, in contrast to other amorphous semiconductors, highly conducting degenerate states can be obtained with IGZO through doping, yet such a state cannot be produced with a-Si. IGZO thin films are capable of mobilities greaterthan 10 $cm^2$/Vs (higher than a-Si:H), and are transparent at visible wavelengths. For oxide semiconductors, carrier concentrations can be controlled through oxygen vacancy concentration. Hence, adjusting the oxygen partial pressure during deposition and post-deposition processing provides an effective method of controlling oxygen concentration. In this study, we deposited IGZO thinfilms at optimized conditions and then analyzed the film's electrical properties, surface morphology, and crystal structure. Then, we explored how to generate IGZO thin films using DC magnetron sputtering. We also describe the construction and characteristics of a bottom-gate-type TFT, including the output and transfer curves and bias stress instability mechanism.

  • PDF

A Study on the Structural Performance and the Design of Propeller Root Fillet Surfaces having nT-T/n section (nT-T/n 단면형상을 갖는 프로펠러 뿌리 필렛의 구조 성능 분석과 설계방안에 관한 연구)

  • Ruy, Won-Sun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.5
    • /
    • pp.372-379
    • /
    • 2015
  • The blade root fillets which have strong influences on the performance of propellers in the both structural and hydrodynamic points of view, are mechanical parts for smooth connection surface with a blade and a hub. A few related researches (Sabol, 1983; Kennedy, 1997) have noted that 3T-T/3 double radius section design would be suitable for reducing Stress Concentration Factor(SCF) and increasing Cavitation Inception Speed(CIS). In this paper, it is confirmed that this compound cross-section design has come close to the optimum solution in the shape optimization standpoint so that it could protect the propeller blade under the frequent and various loading cases. On that basis, we suggest the definite and simple fillet design methodology that has the cross-section with nT-T/n compound radius and elliptic shape which could sustain the given derivatives information as well as the offsets at the boundary and all inner region of the fillet surface. In addition, the result of design is presented in form of IGES file format in order to connect with NC machine seamlessly.