• Title/Summary/Keyword: Stress Collapse

Search Result 189, Processing Time 0.021 seconds

Oxidation-induced conformational change of Hsp33, monitored by NMR

  • Lee, Yoo-Sup;Kim, Ji-Hoon;Seo, Min-Duk;Ryu, Kyoung-Seok;Kim, Eun-Hee;Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.3
    • /
    • pp.99-105
    • /
    • 2015
  • Hsp33 is a prokaryotic molecular chaperon that exerts a holdase activity upon response to an oxidative stress at raised temperature. In particular, intramolecular disulfide bond formation between the four conserved cysteines that bind a zinc ion in reduced state is known to be critically associated with the redox sensing. Here we report the backbone NMR assignment results of the half-oxidized Hsp33, where only two of the four cysteines form an intramolecular disulfide bond. Almost all of the resolved peaks could be unambiguously assigned, although the total assignments extent reached just about 50%. Majority of the missing assignments could be attributed to a significant spectral collapse, largely due to the oxidation-induced unfolding of the C-terminal redox-switch domain. These results support two previous suggestions: conformational change in the first oxidation step is localized mainly in the C-terminal zinc-binding domain, and the half-oxidized form would be still inactive. However, some additional regions appeared to be potentially changed from the reduced state, which suggest that the half-oxidized conformation would be an intermediate state that is more labile to heat and/or further oxidation.

The Creep Behavior of Shale in Daegu Area (대구지역 셰일의 크리프 특성)

  • 김영수;정성관;차주석;방인호
    • Tunnel and Underground Space
    • /
    • v.13 no.2
    • /
    • pp.100-107
    • /
    • 2003
  • Deformation is found by an external force in the rock which has internal stress. So, deformation is increased in time what is stressed under constant load. Rock materials collapse suddenly in a long period when the creep rate increases slightly. So mechanical deformability of the ground is an essential condition for determination of long term safety in structures. The result of analysis in 40%, 50%, 60%, 70% of constant load in creep test, strain velocity constants $\alpha$ and ${\gamma}$ increase with load increasement. Griggs equation is more exact than Li and Xia, Singh equation, and G$_2$of a flow constant by Burger's model decreases with stress increasement, but η$_1$$_2$and G$_1$ manifest irregularly in this study.

Experimental Study on Compression Behavior between Multi-layered Corrugated Structure and EPS Packaging Materials (골판지 적층재와 EPS 사이의 압축거동에 대한 실험적 연구)

  • Park, Jong-Min;Choi, Won-Sik;Kim, Jong-Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.1
    • /
    • pp.83-91
    • /
    • 2020
  • The evaluation of the compression behavior of the cushioning material is of importance to achieve appropriate packaging design. In order to change packaging design from polymeric-based to more eco-friendly cellulose-based nire effectively, comparative study on the compression behavior between these two packaging materials is crucial. In this study, the stress-strain behavior, hysteresis loss, and response characteristics for cyclic loading were analyzed through compression tests on multi-layered corrugated structure (MLCS) and expanded polystyrene (EPS) packaging materials. MLCS produced in Korea is produced by winding a certain number of single-faced corrugated paperboard, and the compression behavior of this material was turned out to be 6 stages: elastic stage, first buckling stage, sub-buckling stage, densification stage, last buckling stage and high densification stage. On the other hand, EPS's compression behavior was in 3 stages: linear elastic stage, collapse plateau, and densification stage. The strain energy per unit volume (strain energy density) of MLCS did not differ depending on the material thickness, but it showed a clear difference depending on the raw material and flute type. Hysteresis loss of MLCS ranged from 0.90 to 0.93, and there were no significant differences in the raw material and flute type. These values were about 5 to 20% greater than the hysteresis of the EPS (about 0.78 to 0.87).

A Study on the Earthquake Safety Assessment of Energy Storage Facilities According to Climate Change (기후변화에 따른 에너지 저장시설 지진 안전성평가에 관한 연구)

  • Ham, Eun-Gu;Lee, Sung-Il
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.2
    • /
    • pp.226-235
    • /
    • 2021
  • Purpose: The risk assessment for earthquakes was conducted in accordance with the current design standard (KBC2016) for the Coalescer facility, which is a major facility of energy storage facilities. Method: The risk assessment for earthquakes was conducted in accordance with the current design standard (KBC2016) for the Coalescer facility, which is a major facility of energy storage facilities. Result: In this study, by statically loading earthquake loads and evaluating the level of collapse prevention of special-class structures, facility managers can easily recognize and evaluate the risk level, and this analysis result can be applied to future facility risk management. Earthquake analysis was performed so that. Conclusion: As a result of analyzing the Coalescer facility according to the current design standard KBC2016, the stress ratio of the main supporting members was found to be up to 4.7%. Therefore, the members supporting Coalescer were interpreted as being safe against earthquakes with a reproducibility period of 2400 years that may occur in Korea.

Static displacement and elastic buckling characteristics of structural pipe-in-pipe cross-sections

  • Sato, M.;Patel, M.H.;Trarieux, F.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.3
    • /
    • pp.263-278
    • /
    • 2008
  • Structural pipe-in-pipe cross-sections have significant potential for application in offshore oil and gas production systems because of their property that combines insulation performance with structural strength in an integrated way. Such cross-sections comprise inner and outer thin walled pipes with the annulus between them fully filled by a selectable thick filler material to impart an appropriate combination of properties. Structural pipe-in-pipe cross-sections can exhibit several different collapse mechanisms and the basis of the preferential occurrence of one over others is of interest. This paper presents an elastic analyses of a structural pipe-in-pipe cross-section when subjected to external hydrostatic pressure. It formulates and solves the static and elastic buckling problem using the variational principle of minimum potential energy. The paper also investigates a simplified formulation of the problem where the outer pipe and its contact with the filler material is considered as a 'pipe on an elastic foundation'. Results are presented to show the variation of elastic buckling pressure with the relative elastic modulus of the filler and pipe materials, the filler thickness and the thicknesses of the inner and outer pipes. The range of applicability of the simplified 'pipe on an elastic foundation' analysis is also presented. A brief review of the types of materials that could be used as the filler is combined with the results of the analysis to draw conclusions about elastic buckling behaviour of structural pipe-in-pipe cross-sections.

Analytical Solution for the Ultimate Strength of Sandwich Panels under In-plane Compression and Lateral Pressure (조합 하중을 받은 샌드위치 패널의 최종강도 설계식 개발)

  • Kim, Bong Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.535-546
    • /
    • 2019
  • The paper presents a closed-form analytical solution for the ultimate strength of sandwich panels with metal faces and an elastic isotropic core during combined in-plane compression and lateral pressure under clamped boundary condition. By using the principle of minimum potential energy, the stress distribution in the faces during uni-axial edge compression and constant lateral pressure was obtained. Then, the ultimate edge compression was derived on the basis that collapse occurs when yield has spread from the mid-length of the sides of the face plates to the center of the convex face plates. The results were validated by nonlinear finite element analysis. Because the solution is analytical and closed-form, it is rapid and efficient and is well-suited for use in practical structural design methods, including repetitive use in structural optimization. The solution applies for any elastic isotropic core material, but the application that stimulated this study was an elastomer-cored steel sandwich panel that had excellent energy absorbing and protective properties against fire, collisions, ballistic projectiles, and explosions.

An Experimental Study on Grouting Effect for Ground Reinforcement (지반보강 그라우팅 효과에 관한 실험적 연구)

  • Park, Yong-Won;Lee, Goo-Young;Park, Jong-Ho;Hong, Sung-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.399-406
    • /
    • 2004
  • This paper is experimental study on the effect of improved soil strength which was grouted by pressure grouting method for prevent collapse the tunnel's face during excavate tunnel. This study performs to investigate the proper grouting pressure and grouting method through pressure grouting laboratory model tests using loose dense sandy soil using specially designed and fabricated device($180cm{\times}220cm{\times}300cm$) under changing condition of injection in this test The investigation is carried out through measuring the size and shape of grout bulb, elastic modulus by pressure-meter test Elastic modulus was estimated using relation stress with strain which is result the uni-direction compressive strength test for cured grouted bulb under water during 28days. From these test results, the amount of increased elastic modulus of grouted zone was suggested.

  • PDF

Effect of Seepage Forces on the Tunnel Face Stability - Assessing through Model Tests - (침투력이 터널 막장의 안정성에 미치는 영향 연구 - 모형실험을 중심으로 -)

  • 이인모;안재훈;남석우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.41-48
    • /
    • 2001
  • In this study, two factors are simultaneously considered for assessing tunnel face stability: one is the effective stress acting on the tunnel face calculated by upper bound solution; and the other is the seepage force calculated by numerical analysis under the condition of steady-state groundwater flow. The seepage forces calculated by numerical analysis are compared with the results of a model test. From the results of derivations of the upper bound solution with the consideration of seepage forces acting on the tunnel face, it could be found that the minimum support pressure for the face stability is equal to the sum of effective support pressure and seepage pressure acting on the tunnel face. Also it could be found that the average seepage pressure acting on the tunnel face is proportional to the hydrostatic pressure at the same elevation and the magnitude is about 22% of the hydrostatic pressure for the drainage type tunnel and about 28% for the water-proof type tunnel. The model tests performed with a tunnel model had a similar trend with the seepage pressure calculated by numerical analysis. From the model tests it could be also found that the collapse at the tunnel face occurs suddenly and leads to unlimited displacement.

  • PDF

Freiberg's Disease and Metatarsophalangeal Joint Instability (프라이버그병과 중족지 관절 불안정)

  • Young, Kiwon;Kim, Jinsu;Joh, Joowon
    • Journal of Korean Foot and Ankle Society
    • /
    • v.17 no.1
    • /
    • pp.11-16
    • /
    • 2013
  • Freiberg's disease is a osteochondrosis of a metatarsal head that is recognized as primarily a disorder of the second metatarsal. It is seen more often in girls. Pain and limitation of motion of the affected joint is the predominant clincal feature. The radiographic appearance demonstrates from osteosclerosis in the early stage to osteolysis with collapse in the later stage. Conservative therapy may take the form of rest, a stiff shoe, and even a cast support to decrease the stress across the joint. Surgical intervention may also be of benefit. Surgery have been attempted either to modify the diseae process or to salvage the situation once the metatarsophalangeal joint develops degenerative changes. Metatarsophalangeal joint instability is common cause of forefoot pain that can develop in association with a traumatic episode and inflamatory tissue disorders as well as neighboring toe deformities. The second ray is by far the most frequently involved. The diagnosis can be made by clinical observation and physical examination including drawer test. Many surgical procedures have beem recommended when conservative treatment has failed. Procedures described range from soft tissue releases and tendon trasfer to the direct plantar plate repair combined with a Weil osteotomy.

Bending Performance Evaluation of Reinforced Aluminum Square Tube Beams (보강 알루미늄 사각관 보의 굽힘 성능평가)

  • Lee Sung-Hyuk;Choi Nak-Sam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.171-180
    • /
    • 2005
  • Bending performances of aluminum square tube beams reinforced by aluminum plates under three point bending loads have been evaluated using experimental tests combined with theoretical and finite element analyses. A finite element simulation for the three-point bending test was performed. Basic properties of aluminum materials used for initial input data of the finite element simulation were obtained from the true stress-true strain curves of specimens which had been extracted from the Al tube beams. True stresses were determined from applied loads and cross-sectional area records of a tensile specimen with a rectangular cross-section by real-time photographing, and true strains were obtained from in-situ local elongation measurements of the specimen gage portion by the multi-point scanning laser extensometer. Six kinds of aluminum tube beam specimens adhered by aluminum plates were employed fur the bending test. The bending deformation behaviors up to the maximum load described by the numerical simulation were in good agreement with experimental ones. After passing the maximum load, reinforcing plate was debonded from the aluminum tube beam. An aluminum tube beam strengthened by aluminum plate on the upper web showed an excellent bending capability.