• Title/Summary/Keyword: Stress Climate change

Search Result 196, Processing Time 0.034 seconds

Global Assessment of Climate Change-Associated Drought Risk

  • Kim, Heey Jin;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.397-397
    • /
    • 2019
  • With the consequences of climate change becoming more evident, research on climate-associated risks has become a basis for climate adaptation and mitigation. Amongst the different sectors and natural resources considered in assessing such risks, drought is one impact to our environment that experiences stress from climate change but is often overlooked and has the potential to bring severe consequences when drought occurs. For example, when temperatures are higher, water demand increases and water supply decreases; when precipitation patterns fluctuate immensely, floods and droughts occur more frequently at greater magnitudes, putting stress on ecosystems. Hence, it is important for us to evaluate drought risk to observe how different climate change and socioeconomic scenarios can affect this vital life resource. In this study, we review the context of drought risk on the basis of climate change impacts and socioeconomic indicators. As underlined in the IPCC AR5 report, the risks are identified by understanding the vulnerability, exposure, and hazards of drought. This study analyzed drought risk on a global scale with different RCP scenarios projected until the year 2099 with a focus on the variables population, precipitation, water resources, and temperature.

  • PDF

Climate Change and Psychological Adaptation: Psychological Response, Adaptation, and Prevention (기후변화와 심리적 적응: 심리적 반응, 적응, 예방)

  • Moon, Sung-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.3
    • /
    • pp.237-247
    • /
    • 2016
  • Global climate change is becoming one of the greatest challenges facing humanity. This article proposes a psychological perspective of climate change adaptation. Climate change-related severe adverse weather events may trigger mental health problems, including increased post-traumatic stress disorder (PTSD), depression, anxiety, violence, and even suicide. Forced migration could be considered a coping method for dealing with weather events, but it may also pose a psychological threat. People respond to severe weather events in different ways based on their individual characteristics. Psychological risks from adverse weather events are mediated and moderated by these factors, which are influenced by personal cognition, affect, and motivation. Examinations from a psychological perspective, which have been neglected in the science of climate change thus far, may provide keys to successful adaptation and the prevention of serious psychological problems resulting from the experience of severe weather events. A new prevention strategy has been suggested for coping with climate threats through encouraging attitude change, establishing proactive support systems for vulnerable groups, establishing a PTSD network, and implementing a stress inoculation program.

Identification of Molecular Markers for Population Diagnosis of Korean Fir (Abies koreana) Vulnerable to Climate Change

  • Kim, Dong Wook;Park, Da Young;Jeong, Dae Young;Park, Hyeong Cheol
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.1 no.1
    • /
    • pp.68-73
    • /
    • 2020
  • Korean fir (Abies koreana) is an evergreen coniferous tree species that is unique to South Korea. A. koreana is found in a limited sub-alpine habitat and is considered particularly vulnerable to climate change. Identification of populations vulnerable to climate change is an important component of conservation programs. In this study, a heat stress-induced transcriptome RNA-seq dataset was used to identify a subset of six genes for assessment as candidate marker genes for ecologically vulnerable populations. Samples of A. koreana were isolated from ecologically stable and vulnerable regions of the Halla and Jiri mountains, and the expression levels of the six candidate markers were assessed using quantitative real-time polymerase chain reaction. All six of the candidate genes exhibited higher expression levels in samples from vulnerable regions compared with stable regions. These results confirm that the six high temperature-induced genes can be used as diagnostic markers for the identification of populations of A. koreana that are experiencing stress due to the effects of climate change.

The Impact of Climate Change on the Dynamics of Soil Water and Plant Water Stress (토양수분과 식생 스트레스 동역학에 기후변화가 미치는 영향)

  • Han, Su-Hee;Kim, Sang-Dan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.52-56
    • /
    • 2009
  • In this study a dynamic modeling scheme is presented to derive the probabilistic structure of soil water and plant water stress when subject to stochastic precipitation conditions. The newly developed model has the form of the Fokker-Planck equation, and its applicability as a model for the probabilistic evolution of the soil water and plant water stress is investigated under climate change scenarios. This model is based on the cumulant expansion theory, and has the advantage of providing the probabilistic solution in the form of probability distribution function (PDF), from which one can obtain the ensemble average behavior of the dynamics. The simulation result of soil water confirms that the proposed soil water model can properly reproduce the results obtained from observations, and it also proves that the soil water behaves with consistent cycle based on the precipitation pattern. The plant water stress simulation, also, shows two different PDF patterns according to the precipitation. Moreover, with all the simulation results with climate change scenarios, it can be concluded that the future soil water and plant water stress dynamics will differently behave with different climate change scenarios.

  • PDF

Stochastic Behavior of Plant Water Stress Index and the Impact of Climate Change (식생 물 부족 지수의 추계학적 거동과 기후변화가 그에 미치는 영향)

  • Han, Suhee;Yoo, Gayoung;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.507-514
    • /
    • 2009
  • In this study, a dynamic modeling scheme is presented to describe the probabilistic structure of soil water and plant water stress index under stochastic precipitation conditions. The proposed model has the form of the Fokker-Planck equation, and its applicability as a model for the probabilistic evolution of the soil water and plant water stress index is investigated under a climate change scenario. The simulation results of soil water confirm that the proposed soil water model can properly reproduce the observations and show that the soil water behaves with consistent cycle based on the precipitation pattern. The simulation results of plant water stress index show two different PDF patterns according to the precipitation. The simple impact assessment of climate change to soil water and plant water stress is discussed with Korean Meteorological Administration regional climate model.

Gender in Climate Change: Safeguarding LGBTQ+ Mental Health in the Philippine Climate Change Response From a Minority Stress Perspective

  • Rowalt Alibudbud
    • Journal of Preventive Medicine and Public Health
    • /
    • v.56 no.2
    • /
    • pp.196-199
    • /
    • 2023
  • Climate-related events unevenly affect society, worsening mental health disparities among vulnerable populations. This paper highlights that lesbians, gays, bisexuals, transgender, queers, and other individuals identifying as sexual and gender minorities (LGBTQ+) (LGBTQ+) could be considered a climate-vulnerable population in the Philippines, one of the most climate-vulnerable countries. As such, this paper elucidated that LGBTQ+ Filipinos can be marginalized in climate response efforts due to their sexual orientation and gender minority identities. According to the minority stress theory, discrimination against LGBTQ+ individuals may predispose them to mental health problems. Thus, there is a need to institute an LGBTQ+ inclusive mental health response for climate-related events to address discrimination against LGBTQ+ individuals and uphold their mental health.

Spatial Changes in Work Capacity for Occupations Vulnerable to Heat Stress: Potential Regional Impacts From Global Climate Change

  • Kim, Donghyun;Lee, Junbeom
    • Safety and Health at Work
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Background: As the impact of climate change intensifies, exposure to heat stress will grow, leading to a loss of work capacity for vulnerable occupations and affecting individual labor decisions. This study estimates the future work capacity under the Representative Concentration Pathways 8.5 scenario and discusses its regional impacts on the occupational structure in the Republic of Korea. Methods: The data utilized for this study constitute the local wet bulb globe temperature from the Korea Meteorological Administration and information from the Korean Working Condition Survey from the Occupational Safety and Health Research Institute of Korea. Using these data, we classify the occupations vulnerable to heat stress and estimate future changes in work capacity at the local scale, considering the occupational structure. We then identify the spatial cluster of diminishing work capacity using exploratory spatial data analysis. Results: Our findings indicate that 52 occupations are at risk of heat stress, including machine operators and elementary laborers working in the construction, welding, metal, and mining industries. Moreover, spatial clusters with diminished work capacity appear in southwest Korea. Conclusion: Although previous studies investigated the work capacity associated with heat stress in terms of climatic impact, this study quantifies the local impacts due to the global risk of climate change. The results suggest the need for mainstreaming an adaptation policy related to work capacity in regional development strategies.

Study on the Impacts and Countermeasures of Climate Change on Livestock Agriculture (축산부문에 미치는 기후변화의 영향 및 대응방안 연구)

  • Ji, Eun-Sook;Park, Kyu-Hyun
    • Journal of Animal Environmental Science
    • /
    • v.21 no.2
    • /
    • pp.47-54
    • /
    • 2015
  • Climate change has directly impacted environmentally dependent first industry. The changes of amount and frequency of precipitation have caused unstable drinking water supply for grassland and feed crop, and have changed the variety of grassland and feed crop. Rising temperature has caused heat stress on livestock, which has impacted feed intake and livestock products, and also has threatened to the health of livestock by widening the range of sources of diseases. In order for livestock industry to confront climate change, new technology development for climate change adaptation and measures of greenhouse gas mitigation are essential. Agroforestry is the one of alternative measures to mitigate greenhouse gases and to adapt to climate change. Agroforestry is the way rearing livestock and cultivating plants in forest, which is suitable to Korea where mountain area is over 68%. Feedstock such as maize, soybean, rice, and grass grown by agroforestry would decrease feed cost. Agroforestry will decrease heat stress of livestock during hot weather and will be possible to pasture, which increases livestock welfare.

Evaluation of Photochemical Reflectance Index (PRI) Response to Soybean Drought stress under Climate Change Conditions (기후변화 조건에서 콩 한발스트레스에 대한 광화학 반사 지수 반응 평가)

  • Sang, Wan-Gyu;Kim, Jun-Hwan;Shin, Pyeong;Baek, Jae-Kyeong;Lee, Yun-Ho;Cho, Jung-Il;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.261-268
    • /
    • 2019
  • Climate change and drought stress are having profound impacts on crop growth and development by altering crop physiological processes including photosynthetic activity. But finding a rapid, efficient, and non-destructive method for estimating environmental stress responses in the leaf and canopy is still a difficult issue for remote sensing research. We compared the relationships between photochemical reflectance index(PRI) and various optical and experimental indices on soybean drought stress under climate change conditions. Canopy photosynthesis trait, biomass change, chlorophyll fluorescence(Fv/Fm), stomatal conductance showed significant correlations with midday PRI value across the drought stress period under various climate conditions. In high temperature treatment, PRI were more sensitive to enhanced drought stress, demonstrating the negative effect of the high temperature on the drought stress. But high CO2 concentration alleviated the midday depression of both photosynthesis and PRI. Although air temperature and CO2 concentration could affect PRI interpretation and assessment of canopy radiation use efficiency(RUE), PRI was significantly correlated with canopy RUE both under climate change and drought stress conditions, indicating the applicability of PRI for tracking the drought stress responses in soybean. However, it is necessary to develop an integrated model for stress diagnosis using PRI at canopy level by minimizing the influence of physical and physiological factors on PRI and incorporating the effects of other vegetation indices.

Climate Change-induced High Temperature Stress on Global Crop Production (기후변화로 인한 작물의 고온 스트레스 전망)

  • Lee, Kyoungmi;Kang, Hyun-Suk;Cho, ChunHo
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.5
    • /
    • pp.633-649
    • /
    • 2016
  • Exposure to high temperatures during the reproductive period of crops decreases their productivity. The Intergovernmental Panel on Climate Change's (IPCC) fifth Assessment Report predicts that the frequency of high temperatures will continue to increase in the future, resulting in significant impacts on the world's food supply. This study evaluate climate change-induced heat stress on four major agricultural crops (rice, maize, soybean, and wheat) at a global level, using the coupled atmosphere-ocean model of Hadley Centre Global Environmental Model version 2 (HadGEM2-AO) and FAO/IIASA Global Agro-Ecological Zone (GAEZ) model data. The maximum temperature rise ($1.8-3.5^{\circ}C$) during the thermal-sensitive period (TSP) from the baseline (1961-1990) to the future (2070-2090) is expected to be larger under a Representative Concentration Pathway (RCP) 8.5 climate scenario than under a RCP2.6 climate scenario, with substantial heat stress-related damage to productivity. In particular, heat stress is expected to cause severe damage to crop production regions located between 30 and $50^{\circ}N$ in the Northern Hemisphere. According to the RCP8.5 scenario, approximately 20% of the total cultivation area for all crops will experience unprecedented, extreme heat stress in the future. Adverse effects on the productivity of rice and soybean are expected to be particularly severe in North America. In Korea, grain demands are heavily dependent on imports, with the share of imports from the U.S. at a particularly high level today. Hence, it is necessary to conduct continuous prediction on food security level following the climate change, as well as to develop adaptation strategy and proper agricultural policy.

  • PDF