• 제목/요약/키워드: Stress Classification Line

검색결과 9건 처리시간 0.028초

피로설계 및 평가를 위한 3차원 유한요소 응력해석에 관한 고찰;모터구동밸브를 이용한 사례연구 (3-D Finite Element Stress Analysis for Fatigue Design and Evaluation;A Parametric Study of MOV(Motor Operated Valve))

  • 김형근;이상민;장윤석;최재붕;김영진;김윤재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.142-147
    • /
    • 2004
  • In this paper, a new procedure is proposed to accomplish the primary plus secondary stress(P+Q) at the 'structural element' instead of 'transition element'. For the P+Q evaluation, the calculated stresses by FEA are linearized along a stress classification line to extract the stress category, then the stress intensity is calculated to compare with the $3S_{m}$ limit. Also, in this paper, the 'design by analysis' criteria, adopted fundamental concepts and a new approach to calculate $K_{e}$ factors are explained. The new procedure combined with 3-D FEA has been applied to motor operated valve in order to the over conservatism and the rack of margin. The evaluation results show a good applicability and can be utilized for fatigue life evaluation by using P+Q.

  • PDF

Off-line PD Model Classification of Traction Motor Stator Coil Using BP

  • Park Seong-Hee;Jang Dong-Uk;Kang Seong-Hwa;Lim Kee-Joe
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권6호
    • /
    • pp.223-227
    • /
    • 2005
  • Insulation failure of traction motor stator coil depends on the continuous stress imposed on it and knowing its insulation condition is an issue of significance for proper safety operation. In this paper, application of the NN (Neural Network) as a scheme of the off-line PD (partial discharge) diagnosis method that occurs at the stator coil of a traction motor was studied. For PD data acquisition, three defective models were made; internal void discharge model, slot discharge model and surface discharge model. PD data for recognition were acquired from a PD detector. Statistical distributions and parameters were calculated to perform recognition between model discharge sources. These statistical distribution parameters are applied to classify PD sources by the NN with a good recognition rate on the discharge sources.

인공신경망을 이용한 계측응력 분류 및 피로수명 평가 (Stress Classification Using Artificial Neural Networks and Fatigue Life Assessment)

  • 정성욱;장윤석;최재붕;김영진
    • 대한기계학회논문집A
    • /
    • 제30권5호
    • /
    • pp.520-527
    • /
    • 2006
  • The design of major industrial facilities for the prevention of fatigue failure is customarily done by defining a set of transients and performing a calculation of cumulative usage factor. However, sometimes, the inherent conservatism or lack of details as well as unanticipated transients in old plant may cause maintenance problems. Even though several famous on-line monitoring and diagnosis systems have been developed world-widely, in this paper, a new system fur fatigue monitoring and life evaluation of crane is proposed to reduce customizing effort and purchasing cost. With regard to the system, at first, comprehensive operating transient data has been acquired at critical locations of crane. The real-time data were classified, by using adaptive resonance theory that is one of typical artificial neural network, into representative stress groups. Then the each classified stress pattern was mapped to calculated cumulative usage factor in accordance with ASME procedure. Thereby, promising results were obtained fur the crane and it is believed that the developed system can be applicable to other major facilities extensively.

판형쉘열교환기 기본설계를 위한 경향성 분석 (Trend Analysis for Basic Design of a Plate and Shell Heat Exchanger)

  • 최동현;장윤석;강선예
    • 한국압력기기공학회 논문집
    • /
    • 제18권2호
    • /
    • pp.69-76
    • /
    • 2022
  • In order to prepare for a future nuclear market, research for developing floating small modular reactor has been initiated with the aim of differentiating it from large nuclear power plants such as distributed power, heat supply to remote communities and sea water desalination. Depending on the characteristics of the small modular reactor, it is necessary to design a plate and shell heat exchanger that can be manufactured smaller than the U-tube recirculation method. In this study, 12 cases are selected by changing the diameter of the heat plate, the thickness of the device body and the size of the stiffener. Finite element analysis is performed by setting the stress classification lines for the point at which deformation is expected under external pressure conditions for these analysis cases. For the basic design of the plate and shell heat exchanger, the optimal conditions are derived by analyzing the tendency of stress change in the device body and stiffener.

경주-울산일원에 대한 지역지질 특성연구 : 울산단층주변 화강암류의 잔류자기와 대자율 (Geological Characteristics of Kyongju-Ulsan Area : Palaeomagnetism and Magnetic Susceptibility of the Granitic Rocks in the Ulsan Fault Area)

  • 김인수;손문;정현정;이준동;김정진;백인성
    • 자원환경지질
    • /
    • 제31권1호
    • /
    • pp.31-43
    • /
    • 1998
  • A total of 469 granitic samples were collected from 44 sites in the Ulsan fault area, southeast Korea. According to the previous petrographic studies, the granitic rocks have been divided into four groups (Hornblende biotite granodiorite, Hornblende granite, Biotite granite and Alkali-feldspar granite). NRM intensities, values of low field magnetic susceptibility, and magnetic behaviors during stepwise demagnetization experiments suggest rather a three-fold classification: In this scheme, Hornblende granite and Biotite granite are grouped together, as they did not show any significant differences in magnetic characteristics. Based on the Ishihara (1979)'s criterion, Alkali-feldspar granite is classified as ilmenite-series granite, whereas others are classified as magnetite-series granite. In the eastern part of the study area including the Tertiary basin area, declinations of site-mean characteristic remanent magnetizations (ChRMs) show clockwise deflection of more than 30 from the reference direction of east Asia. Both along and in the adjacent region of the Ulsan fault-line, however, no deflection of remanent direction was observed. A boundary line between the deflected and undeflected site-mean ChRMs is defined in this study, which runs roughly parallel to the Ulsan fault-line at the distance of about 6km eastward from the fault-line. We suggest that this newly found boundary line, which we call Yonil tectonic line, released dextral simple shear stress acted in the southeastern part of the Korean peninsula during the opening stage of the East Sea in the Early Cenozoic.

  • PDF

FEA based optimization of semi-submersible floater considering buckling and yield strength

  • Jang, Beom-Seon;Kim, Jae Dong;Park, Tae-Yoon;Jeon, Sang Bae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.82-96
    • /
    • 2019
  • A semi-submersible structure has been widely used for offshore drilling and production of oil and gas. The small water plane area makes the structure very sensitive to weight increase in terms of payload and stability. Therefore, it is necessary to lighten the substructure from the early design stage. This study aims at an optimization of hull structure based on a sophisticated yield and buckling strength in accordance with classification rules. An in-house strength assessment system is developed to automate the procedure such as a generation of buckling panels, a collection of required panel information, automatic buckling and yield check and so on. The developed system enables an automatic yield and buckling strength check of all panels composing the hull structure at each iteration of the optimization. Design variables are plate thickness and stiffener section profiles. In order to overcome the difficulty of large number of design variables and the computational burden of FE analysis, various methods are proposed. The steepest descent method is selected as the optimization algorithm for an efficient search. For a reduction of the number of design variables and a direct application to practical design, the stiffener section variable is determined by selecting one from a pre-defined standard library. Plate thickness is also discretized at 0.5t interval. The number of FE analysis is reduced by using equations to analytically estimating the stress changes in gradient calculation and line search steps. As an endeavor to robust optimization, the number of design variables to be simultaneously optimized is divided by grouping the scantling variables by the plane. A sequential optimization is performed group by group. As a verification example, a central column of a semi-submersible structure is optimized and compared with a conventional optimization of all design variables at once.

Ceromer crown의 교합면 두께에 따른 압축 파절 강도의 비교 (The compressive fracture strength of ceromer crown by the difference of occlusal thickness)

  • 김지연;박하옥;양홍서
    • 구강회복응용과학지
    • /
    • 제18권3호
    • /
    • pp.205-215
    • /
    • 2002
  • This study investigated the compressive fracture strength of Targis ceromer crown by the difference of occlusal thickness on a maxillary first premolar. Control group was a castable IPS-Empress all-ceramic crown with occlusal thickness of 1.5 mm constructed by layered technique. Experimental groups were Targis crowns having different occlusal thicknesses of 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, respectively. The classification of Targis group is T10, T15, T20, T25 and T15N (for no-thermocycling and occlusal thickness of 1.5mm). Ten samples were tested per each group. Except occlusal thickness, all dimension of metal die is same with axial inclination of $10^{\circ}$and marginal width 0.8mm chamfer. All crowns were cemented with Panavia F and thermocycled 1,000 times between $5^{\circ}$ and $55^{\circ}$ water bath with 10 sec dwelling time and 10 sec resting time. The compressive fracture strength was measured by universal testing machine. The results were as follows : 1. Fracture strength was increased as the occlusal thickness increased : compressive fracture strength of Group T10, T15, T20, T25 was $66.65{\pm}4.88kgf$, $75.04{\pm}3.01kgf$, $87.07{\pm}7.06kgf$ and $105.03{\pm}10.56kgf$, respectively. 2. When comparing material, Targis crown had higher fracture strength than IPS-Empress crown : the mean compressive strength of group T15 was $75.04{\pm}3.01kgf$ and the value of group Control was $37.66{\pm}4.28kgf$. 3. Fracture strength was decreased by thermocycling : the compressive fracture strength of T15 was $75.04{\pm}3.01kgf$, which is lower than $90.69{\pm}6.88kgf$ of group T15N. 4. The fracture line of crowns began at the loading point and extended along long axis of tooth. IPS-Empress showed adhesive failure pattern whereas Targis had adhesive and cohesive failure. In the SEM view, stress was distributed radially from loading point and the crack line was more prominent on Targis crown.

단층각력 함량에 따른 전단강도의 분류 (Classification of Shear Strength according to Breccia Content in Fault Core)

  • 윤현석;문성우;서용석
    • 자원환경지질
    • /
    • 제53권2호
    • /
    • pp.167-181
    • /
    • 2020
  • 본 연구에서는 단층핵의 각력(≥4.75 mm) 함량에 따라 각각 5 wt.% (Case-I), 10 wt.% (Case-II) 및 15 wt.%(Case-III) 단위로 전단강도(최대 전단강도)에 대한 모집단을 분류한 후, 각 Case에 대한 분산분석(ANOVA, analysis of variance)과 다중비교분석(multiple comparison analysis)을 수행하였다. 각 수직응력(54 kPa, 108 kPa, 162 kPa)에서 모집단별로 전단강도의 평균과 표준편차를 계산하고, 전단강도의 분산에 통계적으로 유사한 영향을 미치는 각력 함량을 그룹화함으로써 각력 함량과 전단강도 사이의 관계를 정량적으로 분류하였다. 분석 결과, 전단강도는 각력 함량을 15 wt.% 단위로 범주화한 Case-III에서 집단 1(각력 함량 0~15 wt.%)과 집단 2,3(각력 함량 15~30 wt.%와 30 wt.% 이상)으로 명확하게 분류되었다. Case-III의 각력 함량 15 wt.%에서 분류 기준이 되는 전단강도를 산정한 결과, 수직응력별(54 kPa, 108 kPa, 162 kPa)로 각각 43.6 kPa, 77.6 kPa, 118.6 kPa로 산정되었다. 이 결과를 바탕으로 점착력과 내부마찰각의 분포 범위를 산정한 결과, 점착력의 분포 범위는 각력 함량 15 wt.% 이하에서 0~43.6 kPa, 15 wt.% 이상에서 0~70.0 kPa이며, 내부마찰각의 분포 범위는 각력 함량 15 wt.% 이하에서 0~45.7°, 15 wt.% 이상에서 16.7~57.5°로 산정되었다.

해상풍력발전기 설치선박의 스퍼드캔 구조강도 예측법 (Estimation of Structural Strength for Spudcan in the Wind Turbine Installation Vessel)

  • 박주신;이동훈;서정관
    • 해양환경안전학회지
    • /
    • 제28권1호
    • /
    • pp.141-152
    • /
    • 2022
  • 친환경 에너지원 개발에 관한 관심이 증가하면서, 해상풍력발전기 시장은 매년 높은 증가율을 보이면서 성장하고 있다. 이와 맞물려 대용량 해상풍력발전기를 설치할 수 있는 설치선의 수요 또한 급증하고 있다. 풍력발전기 설치 선박(Wind Turbine Installation Vessel)은 설치 및 해체를 위하여 레그(Leg)와 스퍼드캔(Spudcan)을 해저면에 관입시켜서 고정하며, 이때 스퍼드캔 구조 강도 안전성에 대한 검토는 전체 시스템과 연관된 중요한 문제이다. 본 연구에서는 현재 선급에서 제시하고 있는 절차서를 분석하고, 실제 발생할 수 있는 하중 시나리오를 반영한 새로운 절차서를 제안하였으며, 유한요소해석을 통한 검증을 하였다. 기존 방식은 해저면의 기울기와 레그에 발생하는 휨모멘트 그리고 형상에 따른 영향을 검토하지 않기 때문에, 허용응력보다 작은 최대 응력 값을 보이지만, 신규 절차에 따른 결과는 대부분 구조보강이 발생하였다. 이러한 현상은 해상풍력발전기의 크기가 커지면 커질수록 차이가 크게 나타나며, 실제 관입(Pre-load) 조건을 고려하면 상당수의 부재에서 구조적 문제가 발생할 가능성이 있다. 따라서 본 연구에서는 더욱 실제적인 작업조건을 고려한 절차서를 제안하였고, 적용 시 문제점들에 대해서 구조해석을 통한 검증을 수행하였다.