• Title/Summary/Keyword: Stress Concentration Effect

Search Result 1,003, Processing Time 0.032 seconds

Fatigue life evolution of steel wire considering corrosion-fatigue coupling effect: Analytical model and application

  • Yang Ding;Xiao-Wei Ye;Hong Zhang;Xue-Song Zhang
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.363-374
    • /
    • 2024
  • The fatigue life of steel wire is affected not only by fatigue load, but also by corrosion environment in service period. Specially, the corrosion pit will lead to stress concentration on the surface of steel wire inducing the formation of fatigue cracks, and the fatigue cracks will accelerate the corrosion process. Therefore, the corrosion fatigue of steel wire is a coupling effect. In this study, the corrosion-fatigue coupling life curve is derived with considering corrosion-fatigue pitting stage, corrosion-fatigue short crack stage and corrosion-fatigue long crack stage. In addition, the stress concentration factors of different corrosion pits are calculated by COMSOL software. Furthermore, the effect of corrosion environment factors, that is, corrosion rate, corrosion pit morphology, frequency and action factor of fatigue load, on fatigue life of steel wire is analyzed. And then, the corrosion-fatigue coupling life curve is compared with the fatigue life curve and fatigue life curve with pre-corrosion. The result showed that the anti-fatigue performance of the steel wire with considering corrosion-fatigue coupling is 68.08% and 41.79% lower than fatigue life curve and fatigue life curve with pre-corrosion. Therefore, the corrosion-fatigue coupling effect should be considered in the design of steel wire.

Comparative Response of Callus and Seedling of Jatropha curcas L. to Salinity Stress

  • Kumar, Nitish;Kaur, Meenakshi;Pamidimarri, D.V.N. Sudheer;Boricha, Girish;Reddy, Muppala P.
    • Journal of Forest and Environmental Science
    • /
    • v.24 no.2
    • /
    • pp.69-77
    • /
    • 2008
  • Jatropha curcas L. is an oil bearing species with many uses and considerable economic potential as a biofuel crop. Salt stress effect on growth, ion accumulation, contents of protein, proline and antioxidant enzymes activity was determined in callus and seedling to understand the salt tolerance of the species. Exposure of callus and seedling to salt stress reduced growth in a concentration dependent manner. Under salt stress Na content increased significantly in both callus and seedling whereas, differential accumulation in the contents of K, Ca, and Mg was observed in callus and seedling. Soluble protein content differed significantly in callus as compared to seedling, however proline accumulation remained more or less constant with treatments. The proline concentration was ~2 to 3 times more in callus than in seedling. Salt stress induced qualitative and quantitative differences in superoxide dismutase (SOD; E.C. 1.15.1.1) and peroxidase (POX; E.C. 1.11.1.7) in callus and seedling. Salt induced changes of the recorded parameters were discussed in relation to salinity tolerance.

  • PDF

Nitrate Metabolism Affected by Osmotic Stress and Nitrate Supply Level in Relation to Osmoregulation

  • Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.2
    • /
    • pp.77-84
    • /
    • 2000
  • Eight-week old perennial ryegrass (Lolium perenne L. cv. Reveille) plants were exposed to different NO3-concentrations or osmotic stress with NaCI. Previously labeled "N was chased during 14 days of non-labeled'NO3 feeding in order to investigate NO3 metabolism in relation to osmoregulation. The short termmeasurement of osmotic potential showed that the extemal concentration of Nos- had not great effect on theosmotic potential, but that osmotic adjustment was observed in NaCl-treated plants. Total uptake of NO 3 - waslargely increased by increasing supply level of NO3 while it was depressed by exposing to osmotic stress.Nitrate reduction increased to more than 29% by increasing extemal NO,- concentration from 1 mM to 10mM. When osmotically stressed with NaCI, nitrate reduction was depressed to about 37% as compared to thecontrol. The decrease in translocation of reduced N into leaves was also observed in NaCl exposed plants. Inthe medium exposed to 10 mM NO,., osmotic contribution of nitrate to cumulative osmotic potential wasdecreased, and it was osmotically compensated with soluble carbohydrate. When osmotically stressed withNaC1, the contribution of chloride was much higher than that of nitrate. The present data indicate that N03-in plant tissues, factually affected by the assimilation of this ion, plays an active role in osmotic regulation incorrelation with other osmotica such carbohydrate and chloride.(Key words : Nitrate metabolism, Osmotic stress, Nitrate supply level, Osmoregulation)ate supply level, Osmoregulation)

  • PDF

Effect of Hot Environment on the Body Temperature and Plasma Cortisol Concentration in Ruminant (高溫環境이 反芻家畜의 체온 및 혈장 Cortisol 농도에 미치는 影響)

  • Chung, Tae-Young;Yang, Young-Jik;Lee, Sang-Rak;Yoon, Hee-Sup
    • Journal of Animal Environmental Science
    • /
    • v.1 no.1
    • /
    • pp.39-45
    • /
    • 1995
  • Temperatures of blood and skin, respiratory rate and plasma cortisol concentration in sheep at a warm (average ambient temperature of $15.3^{\circ}C$) and a hot (average ambient temperature of $27.0^{\circ}C$ environment were measured to investigate the effect of hot environment on the physiological responses in ruminant. Temperatures of core, mean skin and mean body in sheep were tended to increase at day time and to decrease at night time at both warm and hot environment, while 24-hr average for those temperatures were significantly higher at hot environment than at warm environment (P<0.05). The calculated body heat content was higher in sheep at hot environment than at warm environment (P<0.05). Respiratory rate and plasma cortisol concentration had no significant differences between warm and hot environment, suggesting that sheep were not stress by the hot environment in this experiment. It is, therefore, suggested that sheep were well adopted to hot environment by increasing body heat content against heat stress.

  • PDF

Effect of Chromium Stress on Antioxidative Enzymes and Malondialdehyde Content Activities in Leaves and Roots of Mangrove Seedlings Kandelia Candel (L.) Druce

  • Rahman, Mohammed Mahabubur;Rahman, Motiur M.;Islam, Kazi Shakila;Chongling, Yan
    • Journal of Forest and Environmental Science
    • /
    • v.26 no.3
    • /
    • pp.171-179
    • /
    • 2010
  • Effect of chromium (Cr) stress on antioxidant enzyme activities and malondialdehyde (MDA) content were investigated in leaves and roots of mangrove (italic (L.) Druce) seedlings. Cr toxicity effects were also assessed on young seedlings. The seedlings were grown in green house condition for three months in nutrient solution with 0, 0.5, 1, 1.5, 2, 2.5, and 3 mg $L^{-1}$ $CrCl_3$. This study showed that Cr led to the change of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) and activities at different concentrations. The activity of antioxidant enzymes in leaves of K. candel seedlings indicates that enzymes engaged in antioxidant defense in certain level especially in low concentration of Cr treatments. The activities of SOD and POD were activated by Cr in the root level, while CAT activity was inhibited. CAT activity decreased in response to high concentrations of Cr. In the present study indicated that SOD in root was active in scavenging the superoxide produced by Cr. Both in roots and leaves, an increase in malondialdehyde (MDA) content was observed with increase in metal concentration and exposure periods. Our finding indicated that the high concentration of excessive Cr supply may interfere with several metabolic processes of seedlings, causing toxicity to plants as exhibited by chlorosis, necrosis, photosynthetic impairing and finally, plant death.

Effect of Kimchi Ingredients to Reactive Oxygen Species in Skin Cell Cytotoxicity (김치 주.부재료의 활성산소에 대한 피부 세포독성 완화효과)

  • 문갑순;류승희;전영수;문정원;이영순
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.998-1005
    • /
    • 1997
  • Kimchi showed protective effect from oxidative damage generated by hydrogen peroxide and paraquat. To investigate the major components of kimchi which reduce the cytotoxicity against reactive oxygen species, keratinocyte(A431, epidermoid carcinoma, human) and fibroblast(CCD-986SK, normal control, human) were cultured under oxidative stress condition provoked by paraquat, a superoxide anion generator, and hydrogen peroxide in the absence or presence of kimchi ingredients. Most keratinocyte and fibroblast cells were killed by hydrogen peroxide and paraquat over 1mM concentration, but kimchi ingredients showed protective effects from oxidative damage generated by hydrogen peroxide and onion, among those, garlic showed the most remarkable preventive effect. Most of kimchi ingredients showed protective effect against paraquat, especially leek notably increased cell survival. For fibroblast cells, ginger had the preventive effect against paraquat, especially leek notably increased cell survival. For fibroblast cells, ginger had the preventive effect from cell killing by high dose of hydrogen peroxide, but most ingredients were not effective against paraquat.

  • PDF

Changes in Root Water Uptake and Chlorophyll Fluorescence of Rice (Oryza sativa L. cv. Dongjin) Seedling under NaCl Stress (NaCl 스트레스에 따른 벼 유식물의 뿌리 수분흡수와 엽록소형광의 변화)

  • Chun, Hyun-Sik
    • Journal of Life Science
    • /
    • v.18 no.2
    • /
    • pp.154-161
    • /
    • 2008
  • The physiological and photochemical responses of rice seedling to NaCl stress were investigated through measuring leaf relative water content (RWC), root water uptake and chlorophyll fluorescence. When plants were exposed to increased salinity stress, the visual symptoms of injury were significant at ${\geq}$500 mM NaCl concentration for 4 and 5 day stress periods. The differences in Fv/Fm between control treatment and plants treated with 500 mM and 1,000 mM NaCl were evident after 5 day and 4 day, respectively, whereas in root water uptake its effect was observed at 500 mM and 1,000 mM NaCl at 2 day of salt-stressed periods. Leaf RWC in salt-stressed plants decreased gradually with increasing salinity in exogenous solution and duration of salt stress, and these decrease showed leaf RWC of 58-68% atduration over 2 day stress of 1,000 mM NaCl treatment and 88% at 1 day stress. NaCl stress led to a significant inhibition of the light-induced greening in etiolated rice plants, especially in 4 and 5 day salt-stressed plants, which linearly decreased with NaCl concentration ($R^2$=0.812 and 0.918, respectively). The effects of NaCl stress in rice seedlings indicate that water uptake in root is more sensitive to increasing NaCl concentration and stress duration than Fv /Fm in leaves compared with the same NaCl concentration.

Effects on Mammalian Tissues and Cells by Sulfur Containing Compounds (황함유 화합물이 동물의 조직과 세포에 미치는 영향)

  • 이기섭;이정채;나상록;정희영;임계택
    • Toxicological Research
    • /
    • v.15 no.1
    • /
    • pp.79-87
    • /
    • 1999
  • To know the stress response and antioxidative effect of sulfur containing compounds, we observed the expression of the stress protein (heat shock protein; inducible protein) from mouse tissues and evaluated the protective effects to hydroxyl radical in mouse brain cell culture. Cysteine, methionine or sodium sulfide was fed by oral administration of 1 ml/per 6hr/three times with 1 mM, 2mM or 3mM to mouse, respectively. After that, the stress proteins were extracted from mouse tissues and analyzed the features of expression. The stress proteins by sulfur containing compounds were showed different aspects in the kinds and concentrations of their compounds, and in the tissues of mouse. In the liver, the stress proteins were appeared at different time on the concentration of sulfur containing compounds and had less than 20 KDa as small molecules. In general, the molecular weights of stress protein in liver, the stress proteins were appeared at different time on the concentration of sulfur containing compounds and had less than 20 KDa as small molecules. In general, the molecular weights of stress protein in the spleen were evaluated from 32KDa to 50KDA, and the induced times were relatively late at high concentration of cysteine, early at low concentration of methionine or sodium sulfide. The stress proteins in mouse muscle were detected mostly between 24hr after treatment of sulfur containing compounds. Their molecular weights were 15~24KDa. In the antioxidative effects of sulfur containing compounds to hydroxyl radical, cell viabilities were measured by 63.2% at 10 $\mu\textrm{M}$, 65.5% at 50 $\mu\textrm{M}$, 68.6% at 100 $\mu\textrm{M}$, 78.3% at 150 $\mu\textrm{M}$, or 83.0% at 200 $\mu\textrm{M}$ of cysteine, respectively. At addition of methionine, the cell viabilities were assessed as 58.1% at 10 $\mu\textrm{M}$, 62.8% at 50 $\mu\textrm{M}$, 75.7% at 100 $\mu\textrm{M}$, 78.6% at 150 $\mu\textrm{M}$, and 79.2% at 200 $\mu\textrm{M}$ after 4hrs exposure with 20mU/ml glucose oxidase (GO) system, while the numbers of live cells to hydroxyl radicals in treatment of sodium sulfide were showed 48.6% at 10 $\mu\textrm{M}$, 54.8% at 100 $\mu\textrm{M}$, 51.8% at 150 $\mu\textrm{M}$, and 51.6% at 200 $\mu\textrm{M}$ in the neuronal cells. In the inhibitory effects on the proliferation of tumor cells, percentages of dead cells of the CT-26 or HeLa cell were generally less than 30% even 48hr after addition of sulfur containing compounds. Conclusively, the results of these experiments indicate that stress protein by sulfur containing compounds can be used as physiological indicator for animal nutrition and for environment, and also that cysteine and methionine can play critical roles as an antioxidant.

  • PDF

Effect of Donganme (Sorghum bicolor L. Moench) against oxidative stress in vitro and in a cellular system in glial cells

  • Choi, Ji Myung;Kim, Yeo Jin;Lee, Ah Young;Cho, Eun Ju
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.497-508
    • /
    • 2020
  • In this study, we investigated the protective effects of 'Donganme' (Sorghum bicolor L. Moench) against oxidative stress under in vitro conditions and in a cellular system using C6 glial cells. The radical scavenging activities were observed using the substrates 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl (•OH) radicals. The Donganme extract had an •OH radical scavenging activity of 82.66% at a concentration of 100 ㎍·mL-1. Additionally, when DPPH was used as the substrate, the Donganme extract exhibited a strong radical scavenging activity in a concentration-dependent manner with an IC50 value of 28.56 ㎍·mL-1. Furthermore, treating C6 glial cells with hydrogen peroxide (H2O2) reduced the cell viability and generated reactive of oxygen species (ROS) and lactate dehydrogenase (LDH) compared to the normal levels, indicating that H2O2 induced oxidative stress. However, Donganme extracts increased the cell viability and inhibited ROS and LDH production against oxidative stress by H2O2 in the C6 glial cells. In particular, it showed effective cell protection with the cell viability, ROS production, and LDH release at 83.50, 88.06, and 14.87%, respectively, which were lower than the control or similar to the normal levels even at a low concentration of 100 ㎍·mL-1. The present study suggests that the Donganme extract was effective in protecting against oxidative stress in C6 glial cells through its antioxidant activity. Thus, Donganme could be a promising therapeutic agent for neurodegenerative diseases due to oxidative stress.

FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION ACCORDING TO CAVITY DESIGN OF CLASS V COMPOSITE RESIN FILLING (5급와동의 복합레진 충전에 관한 유한요소법적 응력분석)

  • Um, Chung-Moon;Kwon, Hyuk-Choon;Son, Ho-Hyun;Cho, Byeong-Hoon;Rim, Young-Il
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.67-75
    • /
    • 1999
  • The use of composite restorative materials is established due to continuing improvements in the materials and restorative techniques. Composite resins are widely used for the restoration of cervical lesions because of esthetics, good physical properties and working time. There are several types of cavity design for class V composite resin filling, but inappropriate cavity form may affect bonding failure, microleakage and fracture during mastication. Cavity preparations for composite materials should be as conservative as possible. The extent of the preparation is usually determined by the size, shape, and location of the defect. The design of the cavity preparation to receive a composite restoration may vary depending on several factors. In this study, 5 types of class V cavity were prepared on each maxillary central incisor. The types are; 1) V-shape, 2) round(U) shape, 3) box form, 4) box form with incisal bevel and 5) box form with incisal bevel and grooves for axial line angles. After restoration, in order to observe the concentration of stress at bonding surfaces of teeth and restorations, developing a 2-dimensional finite element model of labiopalatal section in tooth, surrounding bone, periodontal ligament and gingiva, based on the measurements by Wheeler, loading force from direction of 45 degrees from lingual side near the incisal edge was applied. This study analysed Von Mises stress with SuperSap finite element analysis program(Algor Interactive System, Inc.). The results were as follows : 1. Stress concentration was prevalent at tooth-resin bonding surface of cervical side on each model. 2. In model 2 without line angle, stress was distributed evenly. 3. Preparing bevel eliminated stress concentration much or less at line angle. 4. Model with round-shape distributed stress concentration more evenly than box-type model with sharp line angle, therefore decreased possibility of fracture. 5. Adding grooves to line angles had no effect of decreasing stress concentration to the area.

  • PDF