• Title/Summary/Keyword: Stress intensity factor

Search Result 1,227, Processing Time 0.031 seconds

Cure and Mechanical Behaviors of Cycloaliphatic/DGEBA Epoxy Blend System using Electron-Beam Technique (전자선 조사에 의한 고리지방족/DGEBA 에폭시 블렌드 시스템의 경화 및 기계적 특성)

  • 이재락;허건영;박수진
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.210-216
    • /
    • 2003
  • 4-Vinyl-1-cyclohexene diepoxide (VCE)/diglycidyl ether of bisphenol-A (DGEBA) epoxy blends with benzylquinoxalinium hexafluoroanti-monate were cured using an electron-beam technique. The effect of DGEBA content to VCE on cure behavior, thermal stabilities, and mechanical properties was investigated. The composition of VCE/DGEBA blend system vaned within 100:0, 80:20, 60:40, 40:60, 20:80, and 0:100 wt%. The cure behavior and thermal stability of the cured specimens was monited by near-infrared spectroscopy and thermogravimetric analysis, respectively. Also, the critical stress intensity factor ($_{4}$) test of the cured specimens was performed to study the mechanical interfacial properties. As a result, the decreases of short side-chain structure and chain scission were observed in NIR measurements as the DGEBA content increases, resulting in varying the hydroxyl and carbonyl groups. And, the initial decomposition temperature (IDT), temperature of maximum weight loss (T$\_$max/), and decomposition activation energy (E$\_$d/) as thermal stability factors were increased with increasing the DGEBA content. These results could be explained by mean of decreasing viscosity, stable aromatic ring structure, and grafted interpenetrating polymer network with increasing of DGEBA content. Also, the maximum $_{4}$ value showed at mixing ratio of 40:60 wt% in this blend system. in this blend system.

Roles of Acid-Base Surface Interaction on Thermal and Mechanical Interfacial Behaviors of SiC/PMMA Nanocomposites (산-염기 표면반응이 탄화규소/PMMA 나노복합재료의 열적·기계적 계면특성에 미치는 영향)

  • Park, Soo-Jin;Oh, Jin-Seok
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.632-636
    • /
    • 2005
  • In this work, the effect of chemical treatments on surface properties of SiC was investigated in thermal and mechanical interfacial behaviors of SiC/PMMA nanocomposites. The acid/base value, contact angles, and FT-IR analysis were performed for the study of surface characteristics of the SiC studied. The thermal stabilities of the SiC/PMMA nanocomposites were investigated by thermogravimetric analysis (TGA). Also the mechanical interfacial properties of the composites were studied in critical stress intensity factor ($K_{IC}$) and critical strain energy release rate ($G_{IC}$) measurements. As a result, the acidically treated SiC (A-SiC) had higher acid value than that of untreated SiC (V-SiC) or basically treated SiC (B-SiC). The acidic solution treatment led to an increase in surface free energy of the SiC, mainly due to the increase of its specific component. Thermal and mechanical interfacial properties of the SiC/PMMA nanocomposites, including initial decomposition temperature (IDT), $K_{IC}$, and $G_{IC}$ had been improved in the acidic treatment on SiC. This was due to the improvement in the interfacial bonding strength, resulting from the acid-base interfacial interactions between the fillers and polymeric matrix.

Analysis of Apparent Fracture Toughness of a Thick-Walled Cylinder with an FGM Coating at the Inner Surface Containing a Radial Edge Crack (반경방향의 모서리 균열을 갖고 내면이 경사기능재료(FGM)로 코팅된 두꺼운 실린더의 겉보기 파괴인성해석)

  • Afsar, A.M.;Rasel, S.M.;Song, J.I.
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • This study analyzes the apparent fracture toughness of a thick-walled cylinder with a functionally graded material (FGM) coating at the inner surface of the cylinder. The cylinder is assumed to have a single radial edge crack emanating from its inner surface. The crack surfaces and the inner surface of the cylinder are subjected to an internal pressure. The incompatible eigenstrain developed in the cylinder due to nonuniform coefficient of thermal expansion as a result of cooling from sintering temperature is taken into account. Based on a method of evaluating stress intensity factor introduced in our previous study, an approach is developed to calculate apparent fracture toughness. The approach is demonstrated for a cylinder with a TiC/$Al_{2}O_{3}$ FGM coating and some numerical results of apparent fracture toughness are presented graphically. The effects of material distribution profile, cylinder wall thickness, application temperature, and coating thickness on the apparent fracture toughness are investigated in details. It is found that all of these factors play an important role in controlling the apparent fracture toughness of the cylinder.

Effects of Crack Resistance Properties of Ozone-treated Carbon Fibers-reinforced Nylon-6 Matrix Composites (탄소섬유의 오존처리가 나일론6 기지 복합재료의 크랙저항에 미치는 영향)

  • Han, Woong;Choi, Woong-Ki;An, Kay-Hyeok;Kim, Hong-Gun;Kang, Shin-Jae;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.363-369
    • /
    • 2013
  • In this work, the effects of ozone treatments on mechanical interfacial properties of carbon fibers-reinforced nylon-6 matrix composites were investigated. The surface properties of ozone treated carbon fibers were studied by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). Mechanical interfacial properties of the composites were investigated using critical stress intensity factor ($K_{IC}$). The cross-section morphologies of ozone-treated carbon fiber/nylon-6 composites were observed by scanning electron microscope (SEM). As a result, $K_{IC}$ of the ozone-treated carbon fibers-reinforced composites showed higher values than those of as-received carbon fibers-reinforced composites due the enhanced $O_{1s}/C_{1s}$ ratio of the carbon fiber by the ozone treatments. This result concludes that the mechanical interfacial properties of nylon-6 matrix composites can be controlled by suitable ozone treatments on the carbon fibers.

Fatigue Crack Propagation and Fatigue Life Evaluation of High-Performance Steel using Modified Forman Model (수정 Forman 모델을 이용한 고성능 강재의 피로균열전파와 피로수명평가)

  • Choi, Sung-Won;Kang, Dong-Hwan;Lee, Jong-Kwan;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1361-1368
    • /
    • 2011
  • Fatigue crack propagation behavior and the fatigue life in-high performance steel were investigated by means of fatigue crack propagation tests under constant loading conditions of 'R=0.1 and f=0.1 Hz', 'R=0.3 and f=0.3 Hz', and 'R=0.5 and f=0.5 Hz' for the load ratio and frequency, respectively. A modified Forman model was developed to describe the fatigue crack propagation behavior for the conditions. The modified Forman model is applicable to all fatigue crack propagation regions I, II, and III by implementing the threshold stress intensity factor range and the effective stress intensity factor range caused by crack closure. The results show that predicted fatigue lives of Forman and modified Forman models were 8,814 and 12,292 cycles, respectively when the crack propagated approximately 5.0 mm and the load ratio and frequency were both 0.1. Comparison of the test results indicates that the modified Forman model showed much more effective fatigue crack propagation behavior in high-performance steel.

Subcritical crack growth in rocks in an aqueous environment (수성환경에서 암석 내의 임계하 균열성장 연구)

  • Nara, Yoshitaka;Takada, Masafumi;Igarashi, Toshifumi;Hiroyoshi, Naoki;Kaneko, Katsuhiko
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.163-171
    • /
    • 2009
  • Subcritical crack growth is one of the main causes of time-dependent fracturing in rock. In the present study, we investigated subcritical crack growth in rock in distilled water (pH = 5.7) and in an aqueous solution of sodium hydroxide (NaOHaq, pH = 12), comparing the results to those in air. We also investigated the effect of the pH in an aqueous environment. We used andesite and granite for all our tests. We determined the relationship between the crack velocity and the stress intensity factor using the double-torsion test under conditions of controlled temperature. We showed that crack velocities in water were higher than those in air, in agreement with other research results indicating that crack velocity increases in water. When we compared our results for NaOHaq with those for water, however, we found that the crack velocity at the same stress intensity factor did not change even though the pH of the surrounding environment was different. This result does not agree with the accepted understanding that hydroxide ions accelerate subcritical crack growth in rocks. We concluded that the pH at the crack tip influences subcritical crack growth, and not the bulk pH, which has little effect.

Effect of Anodic Oxidation of H2SO4/HNO3 Ratio for Improving Interfacial Adhesion between Carbon Fibers and Epoxy Matrix Resins (탄소섬유와 에폭시 기지의 계면강도 증가를 위한 황산/질산 양극산화에 관한 영향)

  • Moon, Cheol-Whan;Jung, Gun;Im, Seung-Soon;Nah, Changwoon;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.61-65
    • /
    • 2013
  • In this work, the anodic oxidation of carbon fibers was carried out to enhance the mechanical interfacial properties of carbon fibers-reinforced epoxy matrix composites. The surface characteristics of the carbon fibers were studied by FTIR, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Also, the mechanical interfacial properties of the composites were studied with interlaminar shear strength (ILSS), critical stress intensity factor ($K_{IC}$), and critical strain energy release rate ($G_{IC}$). The anodic oxidation led to a significant change in the surface characteristics of the carbon fibers. The anodic oxidation of carbon fiber improved the mechanical interfacial properties, such as ILSS, $K_{IC}$, and $G_{IC}$ of the composites. The mechanical interfacial properties of the composites anodized at 20% sulfuric/nitric (3/1) were the highest values among the anodized carbon fibers. These results were attributed to the increase of the degree of adhesion at interfaces between the carbon fibers and the matrix resins in the composite systems.

Calculation of Expected Life of Hydrogen Pressure Vessels by Fracture and Fatigue Mechanics assuming Semi-elliptical Cracks and Analysis of the Effect of Thickness and Radius (반타원형 균열을 가정한 파괴 및 피로역학에 의한 수소 압력용기의 예상 수명 계산과 두께와 내경이 미치는 영향 분석)

  • Kim, Jeong Hwan;Lee, Hwa Young;Lee, Min-Kyung;Lee, Jae-Hun;Lyu, Geunjun
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.53-65
    • /
    • 2021
  • While the hydrogen refueling station is rapidly expanded and installed, the safety inspection of the hydrogen pressure vessel in the station should be very important. Of these, according to ASME, hydrogen embrittlement tests must be performed for hydrogen vessel that store hydrogen above a certain pressure. The main test method for hydrogen embrittlement inspection is to carry out fracture tests and fatigue fracture tests in a high pressure hydrogen atmosphere, which allows the durability limit of the pressure vessel to be measured and the endurable limit to be determined in the hydrogen atmosphere. In detail, the critical crack depth can be calculated by the stress intensity factor(K), and the service life can be determined by da/dN (fatigue growth rate). API579-1/ ASME FFS-1 part 9 exemplifies the calculation method according to the mode of crack-like flaws, but for various shapes such as plates and cylinders, there are about 55 modes according to the shape and location of the crack. Due to the fairly complex formula, it is not easily accessible. In this study, we will show you how to calculate fracture mechanics numerically via Excel and VBA. In addition, this was applied to analyze the effects of the thickness and inner diameter of the pressure vessel on the service life.

Study on Fatigue Behavior and Rehabilitation of Stringer with Coped Section(I) -Experimental Study on Static and Fatigue Behavior- (절취부를 갖는 세로보의 피로거동과 보수·보강에 관한 연구(I) -정적거동 및 피로거동의 실험적 고찰-)

  • Hwang, Yoon Koog;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.363-375
    • /
    • 1997
  • This study encompasses the performance of static and fatigue test for the 8 large scale test specimens to clarify the fatigue behavior of coped stringer and the effect of the repair and strengthening on the damaged stringer of the floor system in steel railway bridges. For the purpose of the research, the actual stress wave for the existing bridge was measured, the basic stress range frequency histogram was made and the equivalent stress range was calculated. Using the result from the equivalent stress range made by adjusting the stress range, the static and fatigue test was carried out by identifying the previous rehabilitation and after. As the result of the static tests, it was revealed that the level of local stress under the S1 specimen test of the real equivalent stress range was similar to tensile strength of the test material, and it was consistent with the requirement of the initiation condition of the fatigue crack. Through the various rehabilitation methods to the damaged specimens, the effects of the repair and reinforcement were analyzed. According to the results of the repair of effect, bolting the high tension bolt over the stop hole was confirmed to be more adequate method than drilling only stop hole to delay the fatigue crack growth. Futhermore, in case of the stringer subjected by bending moment, the reinforcement over the upper flange side was determined to be a useful strengthening method, and the reinforcement to the web of the stringer was not appropriate to accomodate as a adequate strengthening method. Also it was confirmed that the category of the fatigue design for the coped stringer met with the category E specified on the fatigue design criteria of the Highway Standard Specification in Korea.

  • PDF

Stress Analysis of Composite Plate with an Elliptical Hole or a Crack Using Complex Potentials (복소퍼텐셜을 이용한 타원공 또는 균열을 가진 복합재 평판 응력해석)

  • Kwon, Jung-Ho;Hwang, Kyung-Jung
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.56-63
    • /
    • 2007
  • An approach using complex potentials is presented for analysis of composite plate with an elliptical hole or a rectilinear crack. Composite structure is susceptible to encounter impact damages, which lead to considerable decrease in its residual strength. Such impact damages could be modeled as an equivalent elliptical hole or notch-like crack. Even though finite element method is widely used to analyze stresses or fracture mechanics parameters around such damage, it is tedious to make successive FE-modeling for damage tolerance assessment under fatigue loadings. In this point of view, the solutions based on complex potentials are very simple and easy to use. The computed results are also compared and discussed with those from FEA.