• Title/Summary/Keyword: Streptomyces sp..

Search Result 414, Processing Time 0.027 seconds

Isolation and Identification of Streptomyces sp. Producing Anti-vancomycin Resistant Staphylococcus aureus Substance (반코마이신 내성 Staphylococcus aureus 억제 물질 생산 Streptomyces sp.의 분리 및 동정)

  • Oh Se-Teak;Lee Jun-Jae;Lee Ji-Youn;Kim Jin-Kyu;Yang Si-Yong;Kim Yang-Soo;Song Min-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.2
    • /
    • pp.90-95
    • /
    • 2005
  • An Actinomycetes producing an anti-VRSA (vancomycin-resistant Staphylococcus aureus) substance was isolated from soil. The cultural, morphological, physiological and phylogenetic analyses of an isolated strain were investigated for identification. Cultural characteristics based on ISP (International Streptomyces Project) were as follows: white aerial mycelium, yellow reverse side, and good growth on various medium. Also, the isolate did not produce the soluble pigment. Morphological characteristics were showed cylindrical spore chain and smooth spore surface by SEM (Scanning Electron Microscope). Physiological characteristics were showed LL-type by DAP isomer analysis and detected glycine, glutamic acid and alanine. A phylogenetic analysis of the 16S rDNA provided a clue that the isolated strain was actually a member of the genus Streptomyces, because the determined sequence exhibited a higher homology with Streptomyces echinatus. The isolate was identified to be a genus of Streptomyces sp.. The optimal culture conditions for the maximum production of anti-VRSA substance by Streptomyces sp. were attained in a culture medium composed of $2.0\%$ (w/v) glucose, and $0.4\%$ (w/v) yeast extract. The anti-VRSA substance was highly produced after 5 days of culture. Optimal pH and temperature conditions for the production of anti-VRSA substance were pH 7.0 and $28^{\circ}C$, respectively.

Antibacterial Activity of Streptomyces sp. J46 against Bacterial Shot Hole Disease Pathogen Xanthomonas arboricola pv. pruni (Streptomyces sp. J46의 세균성구멍병원균 Xanthomonas arboricola pv. pruni에 대한 항균 활성)

  • Lee, Jeong Eun;Lim, Da Jung;Kim, In Seon
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.20-32
    • /
    • 2021
  • BACKGROUND: Bacterial shot hole of stone fruits is a seriuos plant disease caused by Xanthomonas arboricola pv. pruni (Xap). Techniques to control the disease are required. In this study, microorganisms with antibacterial activity were isolated to develop as a microbial agent against the bacterial shot hole. METHODS AND RESULTS: An isolate with the strongest activity among the isolates was identified as Streptomyces avidinii based on 16S rRNA gene sequence analysis and designated Streptomyces sp. J46. J46 showed suppression of bacterial leaf spot with a control value of 90% at 10 times-diluted cell free supernatant. To investigate antibacterial metabolites produced by J46, the supernatant of J46 was extracted with organic solvents, and the extracts were subjected to chromatography works. Antibacterial metabolites were not extractable with organic solvents. Both reverse and normal phase techniques were not successful because the metabolites were extremely water soluble. The antibacterial metabolites were not volatiles but protein compounds based on hydrolysis enzyme treatment. CONCLUSION: Our study suggests that Streptomyces sp. J46 may be a potential as an microbial agent against bacterial shot hole. Further study to identify the metabolites is required in more detail.

Purification and Characterization of Extracellular Adenosine Deaminase from Streptomyces sp. J-350P (Streptomyces sp. J-350P가 생산하는 세포외 Adenine Deaminase의 부분정제 및 성질)

  • 박정혜;전홍기
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.5
    • /
    • pp.306-311
    • /
    • 1987
  • After series of purification by means of ammonium sulfate fractionation, the 1st and 2nd DEAE-Cellulose, DEAE-Sephadex A-50, and Sephacryl S-200 superfine gel filtration, the activity of extracellular adenine deaminase from Streptomyces sp. J-350P increased 1764 fold and the yield was 0.3% of original activity. The enzyme was stable at the pH range 6.5 to 8.5 and at up to 5$0^{\circ}C$. The optimum pH and temperature of the enzyme were around 6.5 and 35$^{\circ}C$. The molecular weight ol the enzyme was estimated as 36, 000 by calibrated Sephacryl S-200 superfine column chromatography.

  • PDF

Purification and Characterization of Phenoxazinone Synthase from Streptomyces sp. V-8 Mutant Producing Adenoside Deaminase Inhibitor (아데노신 탈아미노화 효소 억제제를 생산하는 Streptomyces sp. V-8의 변이종으로부터 페녹사지논 합성효소의 분리 및 특성)

  • 김경자;조성진
    • YAKHAK HOEJI
    • /
    • v.43 no.1
    • /
    • pp.68-76
    • /
    • 1999
  • Phenoxazinone synthase catalyzes the oxidative condensation of two molecules of substituted o-aminophenol to the phenoxazinone chromophore of actinomycin. Mutant strain, Streptomyces sp. V-8-M-1 producing higher phenoxazinone synthase, was obtained from Streptomyces sp. V-8 by treatment of N-methyl-N'-nitro-N-nitrosoguanidine. The phenoxazinone synthase was purified from extract of mutant strain of Streptomyces sp. V-8-M-l by successive steps of streptomycin sulfate, ammonium sulfate precipitation. DEAE-cellulose and Sephadex G-200 column chromatography. Molecular weight of the enzyme was 360,000 daltons. The enzyme was composed of octamer of a single subunit of 45,000 daltons. The Km value and Vmax value for 3-HAA were $14.9{\;}{\mu}M$ and 9.5 mg/U, respectively. The optimal pH and temperature for the enzyme activity were 9.0 and $25~30^{\circ}C$, respectively. Treatment of the enzyme with group specific reagents, phenylglyoxal, p-hydroxymercury-benzoate, Nbromosuccinimide, 5.5'-dithiobis-nitrobenzoic acid and ethylmaleimide resulted in loss of enzyme activity, which shows arginine and cysteine residues are at or near the active site.

  • PDF

Cloning and Expression of Alginate Lyase from a Marine Bacterium, Streptomyces sp. M3 (해양미생물 Streptomyces sp. M3로부터 alginate lyase의 클로닝 및 발현)

  • Kim, Hee-Sook
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1522-1528
    • /
    • 2009
  • A marine bacterium was isolated from brown seaweeds for its ability to degrade alginate. Analysis of 16S ribosomal DNA sequence revealed that the strain belongs to Streptomyces like strain ALG-5 which was reported previously. New alginate lyase gene of Streptomyces sp. M3 was cloned by using PCR with the specific primers designed from homologous nucleotide sequences. The consensus sequences of N-terminal YXRSELREM and C-terminal YFKAGXYXQ were conserved in the M3 alginate lyase amino acid sequences. The homology model for the M3 alginate lyase showed a characteristic structure of $\beta$-jelly roll fold main domain like alyPG from Corynebacterium sp. ALY-1. The homogenate of the recombinant E. coli with the alginate lyase gene showed more degrading activity for polyguluronate block than polymannuronate block. The results from the multiple alignments and the homology modeling elucidated in the M3 alginate lyase can be classified into family PL-7.

Properties of Chitobiase Produced by Streptomyces sp. (Strepsomyces속 균주가 생산한 Ghitobiase의 효소학적 성질)

  • 김중배
    • The Korean Journal of Food And Nutrition
    • /
    • v.5 no.2
    • /
    • pp.132-136
    • /
    • 1992
  • Streptomyces sp. YB-88-20 was Isolated from soil and the properties of chitobiase were investigated. The optimal reaction condition for the enzyme was pH 5.5 and 4$0^{\circ}C$ , and was stable in the range of pH 4. 0 to 5.5 and temperature at 4$0^{\circ}C$, and 40 min, respectively The enzyme was inactivated by heating at 45$^{\circ}C$ for 1 hr. The enzyme was slightly activated by Mna+. Mg2+, but inhibited by Fea+. Km and activation energy was 1.5072 M and 8.314 kcal/mol.

  • PDF

Identification and Antioxidant Activity of Marine Actinomycetes Streptomyces sp. ACT-1 (해양방선균 Streptomyces sp. ACT-1의 동정 및 항산화 활성)

  • Kim, Man-Chul;Kim, Ju-Sang;Kim, Yun-Beom;Harikrishnan, Ramasamy;Han, Yong-Jae;Heo, Moon-Soo
    • Korean Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.397-403
    • /
    • 2009
  • For the research of the natural antioxidant from marine sources, an antioxidant-producing marine actinomycetes was isolated from sea water in Jeju coastal area. The strain was identified based on 16S rDNA sequencing, the morphology by a method of scanning electron microscopy, physiological and biochemical characteristics and cellular fatty acid analysis. The isolated strain ACT-1 cell size was $0.5\sim1.0{\mu}m$ and gram positive, aerobic, nonmotile, substrate mycelium are red and gray aerial mycelium. 16S rRNA sequence analysis showed that were Gram-positive bacteria grouped on Streptomyces genus. Results of cellular fatty acid analysis showed that major cellular fatty acids were $C_{15:0}$ anteiso (39.33%), $C_{16:1}$ cis 9 (11.96%), $C_{16:0}$ (13.08%) and $C_{17:0}$ anteiso (10.99%). Finally, strain was identified Streptomyces sp. ACT-1. The antioxidant activity of methanol extract from Streptomyces sp. ACT-1 was evaluated by measuring DPPH, hydroxyl, and alkyl radical scavenging activity using an electron spin resonance (ESR) spectrometer. DPPH radical scavenging activity of SBME-1 (Streptomyces broth methanol extract) was 67% at $1,000{\mu}g$/ml. Hydroxyl radical scavenging activity of SBME-1 was 84% at $500{\mu}g$/ml. Alkyl radical scavenging activity of SBME-1 was 71% at $1,000{\mu}g$/ml.

Selection of Beneficial Microbial Agents for Control of Fungal Diseases in the Phyllosphere of Cucumber Plant (오이 지상부의 주요 곰팡이 병해의 생물적 방제용 유용미생물의 선발)

  • Lee, Sang-Yeob;Lee, Young-Kee;Park, Kyung-Seok;Kim, Yong-Ki
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.4
    • /
    • pp.326-331
    • /
    • 2010
  • Bacillus subtilis B29, B. subtilis M10 and Streptomyces sp. CC19 obtained from phyllosphere of cucumber plants were selected for biological control of fungal air-borne diseases. For the downy mildew, diseased area of B. subtilis B29, B. subtilis M10 and Streptomyces sp. CC19 showed 0.5%, 20.2% and 42.0%, but that of control was 82.0% respectively, in cucumber seedling test. Incidence of powdery mildew by once application of B. subtilis B29, B. subtilis M10 and Streptomyces sp. CC19 was 2.8%, 3.6% and 12.3%, respectively, whereas that of control was 65.6%. On the gray mold, diseased area of B. subtilis B29, B. subtilis M10 and Streptomyces sp. CC19 was 8.0%, 30.8% and 5.2%, respectively, compared to 81.2% for the control. Therefore, B. subtilis B29 could be a prospective antagonist for biological control of powdery mildew, downy mildew and gray mold of cucumber plant.

Production of Endo-Type Inulnse from Streptomyces sp. S56 (Streptomyces sp. S56의 Endo형 Inulase 생산)

  • 하영주;최언호;김수일
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.593-599
    • /
    • 1989
  • A strain producing extracellular endo-type inulase was selected from Actinomycetes isolated from soil, and identified as Streptomyces sp. The maximum inulase production was obtained with medium containing inulin 1.0%, yeast extract 1.0%, (NH$_4$)$_2$HPO$_4$ 0.4%, NH$_4$H$_2$PO$_4$0.8%, KCl 0.05%, MgSO$_4$ㆍ7$H_2O$ 0.05%, FeSO$_4$ㆍ7$H_2O$ 0.001% at 96 hours culture in jar fermentor. The endo-type inulase was considered to be an inducible enzyme produced by inulin only.

  • PDF

Optimal Conditions for the Production of Sphimin, a Sphingomyelinase Inhibitor from Steptomyces sp. F50970

  • Sipkyu Lim;Park, Wan
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.5-8
    • /
    • 1999
  • We isolated a sphingonyelinase (SMase) inhibitor, which would be a potential reagent to regulate cell proliferation, oncogenesis, and inflammation, from a strain of Streptomyces sp.. In this paper, we report the optimal conditions for the production of SMase inhibitor, designed as sphinin, from Streptomyces sp. F50970. The optimal carbon and nitrogen source were 1% soluble starch and 0.05%-0.15% trypton. Most of monosaccharides and high concentration of soluble starch above 1.0% caused falling of pH and sphinin production. Zn2+, Cu2+, Fe2+, Mn2+, and Co2+inhibited cell growth and the production of sphinin. Inorganic phosphate promoted the sphinin production. Optimal initial pH for the production of sphinin was 7.5-8.0. Addition of CaCO3 to the medium resulted in an increase of inhibitor production. Based on these results, we designed a fermentation medium for the production of a SMase inhibitor, sphinin, from Streptomyces sp. F50970.