• Title/Summary/Keyword: Streptomyces rochei

Search Result 5, Processing Time 0.021 seconds

Identification of herbicidal antibiotic maculosins-producing Streptomyces rochei 87015-3 (제초 항생물질 maculosin 생산균주 Streptomyces rochei 87015-3의 동정)

  • Cho, Hong-Yon;Choi, Yong-Chul;Suh, Hyung-Joo;Shin, Kwang-Soon;Lee, Heui-Bong;Kwon, Hyung-Jin;Kim, Soo-Un
    • Applied Biological Chemistry
    • /
    • v.36 no.6
    • /
    • pp.476-480
    • /
    • 1993
  • A bacterial strain, which has been shown to produce herbicidal antibiotics maculosins and phenylacetic acid, was identified as a member of Streptomyces rochei. The identification was based on morphological and physiological characteristics. This is the first bacterial strain that produces maculosins other than a fungus, Alternaria alternata.

  • PDF

Identification and Fermentation of a Streptomyces Producing Aurodox Group Antibiotics

  • Kim, Si-Kwan;Yeo, Woon-Hyung;Kim, Sang-Seock
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.260-264
    • /
    • 1996
  • An isolate, 90-GT-129 was found to produce antibiotics with a selective inhibitory activity against Streptococcus pyogenes and Xanthomonas sp. The isolate formed a gray spiral aerial spore mass with smooth surface. Analysis of the cell wall acid hydrolysate of the isolate revealed presence of LL-di-aminopimelic acid, which indicates that the isolate belongs to a cell wall type Ⅰ actinomycetes. Cultural and physiological characteristics of the isolate placed it in Streptomyces rochei synonym cluster. A comparison of the isolate with 26 reference strains of Streptomyces rochei synonym demonstrated differences in physiological and cultural characteristics.

  • PDF

Isolation, Physico-chemical Properties and Biological Activity of Aurodox Group Antibiotics

  • Kim, Si-Kwan;Yeo, Woon-Hyung;Kim, Sang-Seock
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.265-269
    • /
    • 1996
  • An isolate of Streptomyces rochei synonym was found to produce antibiotics with narrow anti-microbial spectrum against Streptococcus and Xanthomonas sp. Among the antibiotic complex produced by the strain, the main active compound was isolated, and its physico-chemical properties and biological activities were investigated. Molecular weight of the compound was determined to be ${[M+H]}^+$ 797 (FAB-MS). UV, $^1H \;and\;^{13}C$ NMR, and IR spectra suggested that the compound is a kirromycin-like aurodox group antibiotic. However, the anti-microbial spectrum of the main compound was slightly different from that of kirromycin. In addition, it was newly found that kirromycin showed a selective anti-microbial activity against Streptococcus pyogenes and phytopathogenic Xanthomonas sp.

  • PDF

Physiological importance of trypsin-like protease during morphological differentiation of streptomycetes

  • Kim, In-Seop;Kang, Sung-Gyun;Lee, Kye-Joon
    • Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.315-321
    • /
    • 1995
  • The relationship between morphological differentiation and production of trypsin-like protease (TLP_ in streptomycetes was studied. All the Streptomyces spp.In this study produced TLP just before the onset of aerial mycelium formation. Addition of TLP inhibitor, TLCK, to the top surface of colonies inhibited aerial mycelium formation as well as TLP inhibitor, TLCK, to the top surface of colonies inhibited aerial mycelium formation as well as TLP activity. Addition of 2% glucose to the Bennett agar medium repressed both the aerial mycelium formation and TLP production in S. abuvaviensis, S. coelicolor A3(2), S exfoliatus, S. microflavus, S. roseus, s. lavendulae, and S. rochei. However the addition of glucose did not affect S. limosus, S. felleus, S. griseus, S. phaechromogenes, and S. rimosus. The glucose repression on aerial mycelium formation and production of TLP was relieved by the addition of glucose anti-metabolite (methyl .alpha.-glucopyranoside). Therefore, it was concluded that TLP production is coordinately regulated with morphological differentiation and TLP activity is essential for morphological differentiation in streptomycetes. The proposed role of TLP is that TLP participates in the degradation of substrate mycelium protein for providing nutrient for aerial mycelial growth.

  • PDF