• Title/Summary/Keyword: Streptomyces griseus ATCC 13273

Search Result 2, Processing Time 0.018 seconds

Strain Improvement by Interspecific Protoplast Fusion of Streptomyces griseus and Streptomyces hygroscopicus producing Acetaminophen (이종간 원형질체 융합을 이용한 acetaminophen 생산균주 개량)

  • Sohn, Yeo-Won;Jung, Dae-Young;Lee, Sang-Sup;Min, Hong-Ki
    • YAKHAK HOEJI
    • /
    • v.38 no.5
    • /
    • pp.595-601
    • /
    • 1994
  • Acetaminophen, a widely used analgesic, can be formed by N-acetylation and p-hydroxylation of aniline. Interspecific protoplast fusion technique was used to get acetaminophen directly from aniline and to increase the productivity of acetaminophen. Three auxotrophic mutants were obtained from S. griseus(ATCC 13273) and S. hygroscopicus(KCTC 1089) by N-methyl-N'-nitro-N-nitrosoguanidine(NTG) treatment. Regeneration frequencies of S. griseus$(his^-)$, S. griseus$(lys^-)$, S. hygroscopicus$(arg^-)$ were 42%, 45%, and 31%, respectively. Fusion of protoplasts carrying different auxotrophic markers was achieved by treatment with polyethylene glycol. When protoplasts were treated with 50% polyethylene glycol for 3 minutes, the fusion frequency between S. griseus$(his^-)$ and S. hygroscopicus$(arg^-)$ was $3.8{\times}10^{-5}$. The fusion frequency between S. griseus$(lys^-)$ and S. hygroscopicus$(arg^-)$ was $5.6{\times}10^{-4}$. When we checked the production of acetaminophen, thirty-four out of the fifty-six fusants produced larger amounts of acetaminophen than the parent strains did. Nine fusants produced twice more and twenty-five fusants produced one to two times more of acetaminophen than their parents.

  • PDF

Design, Synthesis and Evaluation of Pentacyclic Triterpenoids Similar to Glycyrrhetinic Acid Via Combination of Chemical and Microbial Modification as Glycogen Phosphorylases Inhibitor

  • Zhu, Yuyao;Zhang, Jian;Huang, Xiaode;Chen, Bin;Qian, Hua;Zhao, Botao
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1876-1882
    • /
    • 2018
  • A series of pentacyclic triterpenoids similar to glycyrrhetinic acid were designed and synthesized via the combination of chemical modification and microbial catalysis. All products were screened for the glycogen phosphorylases inhibitory activities in vitro. Within this series of derivatives, compound 5 displayed good inhibitory activities with $IC_{50}$ value of $27.7{\mu}M$, which is better than that of the other derivatives and glycyrrhetinic acid. Structure-activity relationship (SAR) analysis of these inhibitors was also discussed.