현대 학습자들은 배경, 학습 스타일, 능력 등에서 다양한 차이를 보인다. 하지만 모든 학습자에게 동일한 학습 내용을 전달하는 전통적 교육 방법은 이러한 학습자의 다양성을 충분히 고려하지 못한다. 따라서 개별 학습자의 특성에 따라 최적의 학습 경험을 제공하는 맞춤형 학습 시스템의 구현은 오늘날 에듀테크 시대에 더욱 중요해졌다. 본 논문은 증가하는 학습자 중심의 교육 요구에 따라 학습자의 특성, 관심사, 학습 이력 등을 종합적으로 분석할 수 있는 모델들을 파악한 후 이를 기반으로 맞춤형 학습 시스템을 설계했다. 본 시스템은 학습자의 학습 이력을 기반으로 학습자의 현재 수준과 목표에 맞춘 자기주도적 학습을 지원하기 위해 강점과 약점을 파악할 수 있도록 설계되었으며 이 과정에서 시스템의 설계 변경 없이 필요한 학습 요소들을 확장할 수 있도록 구성하였다. 본 연구를 통해 사용자 맞춤형 학습 시스템 구축에 필요한 주요 기반을 파악하고 맞춤형 학습을 지원하기 위한 시스템 아키텍처를 효과적으로 구축할 수 있다.
International Journal of Computer Science & Network Security
/
제24권8호
/
pp.21-31
/
2024
This study investigates the user experience (UX) of first aid training using virtual reality (VR) technology. As VR continues to be adopted for educational and training purposes, it is important to understand how learners perceive and engage with this medium for developing critical skills, such as first aid. In this study, we developed a VR application called "VR First Aid" that includes training modules on three emergency scenarios: heatstroke, shock, and seizure. The application has both tutorial and hands-on training components. We conducted a UX study by administering a questionnaire to participants. The UX of learning through the VR application was then compared to using a traditional e-book format. Results indicate that participants perceived stronger internal behavior control with the e-book but reported better confirmation, engagement, enjoyment, and intention to use when training with the VR system. Gender differences were also explored, revealing that female participants expressed greater interest in learning through the VR platform compared to male participants. These findings provide insights into the strengths and limitations of VR-based first aid training compared to traditional methods. Implications for the design and deployment of VR training systems are discussed, with a focus on optimizing the learner experience and learning outcomes.
본 논문의 목적은 미적분에 관한 보충학습을 요하는 이공계 대학생들을 위하여 공업수학의 벡터미적분 교육을 중심으로 개념적 이해와 계산 과정의 단계별 풀이를 보여주는 웹 기반 이러닝 콘텐츠를 설계 및 개발하는 것이다. 이를 위하여 먼저 수학교육용 소프트웨어에 관한 고찰을 하였으며 학교 수학에서 등장하는 문제해결의 과정을 규칙 재작성으로 처리함으로써 화이트박스 형태의 콘텐츠 제작에 관한 이론적 토대를 살펴보았다. 구체적으로 Mathematica의 패턴 매칭을 이용하여 미분과 적분 연산자를 구현하였고, 이를 벡터미적분에서 등장하는 매개변수화된 곡선에 대한 길이 구하기 문제에 적용함으로써 콘텐츠 개발의 예를 제시하였다. 튜토리얼 형태로 개발된 이러닝 콘텐츠는 단계별 풀이 과정이 나오는 실습하기 콘텐츠와 퀴즈 문제를 통하여 학습자의 과정을 진단해 주는 형성평가 모듈로 구성되었다. 끝으로 개발된 이러닝 콘텐츠의 특징과 이공계 대학생들의 수학에 관한 기초학력을 증진하는데 활용될 수 있는 장점을 살펴보았으며 향후 연구 방향을 제시하였다.
인지는 더 이상 개인 내적인 과정으로 개념화 할 수 없으며 학습 또한 마찬가지이다. 협동 및 상호작용에 대한 정보처리적 이해는 아직 부족한 실정인데, 본 논문에서는 학습의 개념이 어떻게 변화해 왔는지 그리고 협동의 과정이 어떠한 정보처리 기제에 의해서 매개되는지 살펴보았다. 협동학습의 주요 인지적 기제로 자원 공유, 구성적 학습 활동의 촉진, 지식 공동 구성, 및 모니터링과 조절 지원을 들 수 있는데, 이들 기제는 학습자 집단을 둘러싼 동기적, 환경적 기제와 상호작용하면서 협동학습의 결과물을 만들어 내는데 기여한다. 테크놀로지의 발달은 협동의 기회를 더욱 확장하고 있는데, 테크놀로지가 협동학습에 제공하는 기능을 7개의 어포던스를 중심으로 살펴보았다. 협업에 대한 보다 정교한 이해를 바탕으로 할 때 협업에 따르는 비용을 줄이면서 협동이 제공하는 다양한 학습 효과를 누리는 것은 물론 협업을 지원하는 효과적인 도구를 개발하는 것이 가능해질 것으로 기대된다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권1호
/
pp.1-15
/
2023
The aim of this study is to identify intelligent learning support functions in Learning Management System (LMS) to support university student learning activities during the transition from face-to-face classes to online learning. To accomplish this, we investigated the perceptions of students on the levels of importance and urgency toward learning support functions of LMS powered with Artificial Intelligent (AI) technology and analyzed the differences in perception according to student characteristics. As a result of this study, the function that students considered to be the most important and felt an urgent need to adopt was to give automated grading and feedback for their writing assignments. The functions with the next highest score in importance and urgency were related to receiving customized feedback and help on task performance processed as well as results in the learning progress. In addition, students view a function to receive customized feedback according to their own learning plan and progress and to receive suggestions for improvement by diagnosing their strengths and weaknesses to be both vitally important and urgently needed. On the other hand, the learning support function of LMS, which was ranked as low importance and urgency, was a function that analyzed the interaction between professors and students and between fellow students. It is expected that the results of this student needs analysis will be helpful in deriving the contents of learning support functions that should be developed as well as providing basic information for prioritizing when applying AI technology to implement learner-centered LMS in the future.
Machine learning-based data analysis approaches have been employed to overcome the limitations in accurately analyzing data and to predict the results of the design of Nb-based superalloys. In this study, a database containing the composition of the alloying elements and their room-temperature tensile strengths was prepared based on a previous study. After computing the correlation between the tensile strength at room temperature and the composition, a material science analysis was conducted on the elements with high correlation coefficients. These alloying elements were found to have a significant effect on the variation in the tensile strength of Nb-based alloys at room temperature. Through this process, a model was derived to predict the properties using four machine learning algorithms. The Bayesian ridge regression algorithm proved to be the optimal model when Y, Sc, W, Cr, Mo, Sn, and Ti were used as input features. This study demonstrates the successful application of machine learning techniques to effectively analyze data and predict outcomes, thereby providing valuable insights into the design of Nb-based superalloys.
본 연구를 통해 자석 및 자기장과 관련된 웹기반 과학학습 시뮬레이션들의 현황을 살펴보고, 시뮬레이션의 내용과 전략 및 디자인 측면에서 적절성을 평가하였다. 연구를 위해 과학학습 시뮬레이션 평가 기준을 고안하였으며, 초등교사 8명이 참여하여 자석 및 자기장 관련 시뮬레이션 14종을 평가 기준에 맞추어 평가하고 각 시뮬레이션의 특징을 기술하였다. 평가 결과를 바탕으로 시뮬레이션들을 상 그룹과 하 그룹으로 분류하였고, 상 그룹의 시뮬레이션에서 강점과, 하 그룹의 시뮬레이션에서 보완할 점들을 교수학습 내용, 교수학습 전략, 화면구성, 기술의 측면에 따라 분석하고 도출하였다. 연구 결과를 근거로 교수학습에 효과적인 자석 및 자기장 주제의 웹기반 시뮬레이션 개선을 위한 방안을 논의하였다.
International Journal of Computer Science & Network Security
/
제22권2호
/
pp.318-326
/
2022
Marketing stress testing is a new method of identifying the company's strengths and weaknesses in a turbulent environment. Technically, this is a complex procedure, so it involves artificial intelligence and machine learning. The main problem is currently the development of methodological approaches to the development of the company's digital model, which will provide a framework for machine learning. The aim of the study was to identify and develop an author's approach to the parameterization of the company's business processes for machine learning-based marketing stress testing. This aim provided the company's activities to be considered as a set of elements (business processes, products) and factors that affect them (marketing environment). The article proposes an author's approach to the parameterization of the company's business processes for machine learning-based marketing stress testing. The proposed approach includes four main elements that are subject to parameterization: elements of the company's internal environment, factors of the marketing environment, the company' core competency and factors impacting the company. Matrices for evaluating the results of the work of expert groups to determine the degree of influence of the marketing environment factors were developed. It is proposed to distinguish between mega-level, macro-level, meso-level and micro-level factors depending on the degree of impact on the company. The methodological limitation of the study is that it involves the modelling method as the only one possible at this stage of the study. The implementation limitation is that the proposed approach can only be used if the company plans to use machine learning for marketing stress testing.
In this study, a model for automatically recognizing several steel parts through a camera before charging materials was developed under the assumption that the temperature distribution in the pre-air atmosphere was known. For model development, datasets were collected in random environments and factories. In this study, the YOLO-v5 model, which is a YOLO model with strengths in real-time detection in the field of object detection, was used, and the disadvantages of taking a lot of time to collect images and learning models was solved through the transfer learning methods. The performance evaluation results of the derived model showed excellent performance of 0.927 based on mAP 0.5. The derived model will be applied to the model development study, which uses the model to accurately recognize the material and then match it with the temperature distribution in the atmosphere to determine whether the material layout is suitable before charging materials.
International Journal of Computer Science & Network Security
/
제22권3호
/
pp.273-275
/
2022
Deep Learning is used nowadays in Nuclei segmentation. While recent developments in theory and open-source software have made these tools easier to implement, expert knowledge is still required to choose the exemplary model architecture and training setup. We compare two popular segmentation frameworks, U-Net and Mask-RCNN, in the nuclei segmentation task and find that they have different strengths and failures. we compared both models aiming for the best nuclei segmentation performance. Experimental Results of Nuclei Medical Images Segmentation using U-NET algorithm Outperform Mask R-CNN Algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.