• 제목/요약/키워드: Strengthening Capacity

검색결과 643건 처리시간 0.025초

사전균열이 발생한 철근콘크리트 보의 외적 포스트텐셔닝 전단보강에서 보강깊이의 효과 (Strengthening Depth Effect in Externally Post-tensioning Shear Strengthening of Pre-cracked Reinforced Concrete Beam)

  • 이수헌;신경재;이희두
    • 대한건축학회논문집:구조계
    • /
    • 제34권11호
    • /
    • pp.19-26
    • /
    • 2018
  • This paper presents the shear strengthening effect of externally post-tensioning (EPT) method using high-strength steel rod in pre-cracked reinforced concrete (RC) beams. Three- and four-point bending tests were performed on a total of 8 specimens by adjusting the strengthening depths in the deviator position of EPT. The effective strengthening depths were 435, 535, and 610 mm. The pre-loading up to about 2/3 of ultimate load capacity measured in unstrengthened RC beam were applied in the beam to be post-tensioned. The EPT method was then applied to the pre-damaged RC beams and re-loading was added until the end of the test. EPT restored deflections of 3 mm or more, which account for about 40% of deflection when the pre-loading was applied. The shear strengthening increases more than 3 times and 36~107% in terms of the stiffness and load-carrying capacity compared to unstrengthening RC beams. The increased load-carrying capacities of the post-tensioned beam with strengthening depths of 435 and 535 mm are almost the same as 36~61%, and those of 610 mm are 84~107%, which shows the greatest shear strengthening effect.

Analytical and numerical studies on hollow core slabs strengthened with hybrid FRP and overlay techniques

  • Kankeri, Pradeep;Prakash, S. Suriya;Pachalla, Sameer Kumar Sarma
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.535-546
    • /
    • 2018
  • The objective of this study is to understand the behaviour of hollow core slabs strengthened with FRP and hybrid techniques through numerical and analytical studies. Different strengthening techniques considered in this study are (i) External Bonding (EB) of Carbon Fiber Reinforced Polymer (CFRP) laminates, (ii) Near Surface Mounting (NSM) of CFRP laminates, (iii) Bonded Overlay (BO) using concrete layer, and (iv) hybrid strengthening which is a combination of bonded overlay and NSM or EB. In the numerical studies, three-dimensional Finite Element (FE) models of hollow core slabs were developed considering material and geometrical nonlinearities, and a phased nonlinear analysis was carried out. The analytical calculations were carried out using Response-2000 program which is based on Modified Compression Field Theory (MCFT). Both the numerical and analytical models predicted the behaviour in agreement with experimental results. Parametric studies indicated that increase in the bonded overlay thickness increases the peak load capacity without reducing the displacement ductility. The increase in FRP strengthening ratio increased the capacity but reduced the displacement ductility. The hybrid strengthening technique was found to increase the capacity of the hollow core slabs by more than 100% without compromise in ductility when compared to their individual strengthening schemes.

Minimum cost strengthening of existing masonry arch railway bridges

  • Rafiee, Amin
    • Structural Engineering and Mechanics
    • /
    • 제75권2호
    • /
    • pp.271-282
    • /
    • 2020
  • The preservation of historic masonry-arch railway bridges is of paramount importance due to their economic benefits. These bridges which belong to past centuries may nowadays be expected to carry loads higher than those for which they were designed. Such an increase in loads may be because of increase in transportation speed or in the capacity of freight-wagons. Anyway, adequate increase in their load-carrying-capacity through structural-strengthening is required. Moreover, the increasing costs of material/construction urge engineers to optimize their designs to obtain the minimum-cost one. This paper proposes a novel numerical optimization method to minimize the costs associated with strengthening of masonry-arch railway bridges. To do so, the stress/displacement responses of Sahand-Goltappeh bridge are assessed under ordinary train pass as a case study. For this aim, 3D-Finite-Element-Model is created and calibrated using experimental test results. Then, it is strengthened such that following goals are achieved simultaneously: (1) the load-carrying-capacity of the bridge is increased; (2) the structural response of the bridge is reduced to a certain limit; and, (3) the costs needed for such strengthening are minimized as far as possible. The results of the case study demonstrate the applicability/superiority of the proposed approach. Some economic measures are also recommended to further reduce the total strengthening cost.

Finite element modeling of pre-damaged beam in concrete frame retrofitted with ultra high performance shotcrete

  • Xuan-Bach Luu
    • Computers and Concrete
    • /
    • 제33권2호
    • /
    • pp.121-136
    • /
    • 2024
  • In recent times, there has been a growing need to retrofit and strengthen reinforced concrete (RC) structures that have been damaged. Numerous studies have explored various methods for strengthening RC beams. However, there is a significant dearth of research investigating the utilization of ultra-high-performance concrete (UHPC) for retrofitting damaged RC beams within a concrete frame. This study aims to develop a finite element (FE) model capable of accurately simulating the nonlinear behavior of RC beams and subsequently implementing it in an RC concrete frame. The RC frame is subjected to loading until failure at two distinct degrees, followed by retrofitting and strengthening using Ultra high performance shotcrete (UHPS) through two different methods. The results indicate the successful simulation of the load-displacement curve and crack patterns by the FE model, aligning well with experimental observations. Novel techniques for reinforcing deteriorated concrete frame structures through ABAQUS are introduced. The second strengthening method notably improves both the load-carrying capacity and initial stiffness of the load-displacement curve. By incorporating embedded rebars in the frame's columns, the beam's load-carrying capacity is enhanced by up to 31% compared to cases without embedding. These findings indicate the potential for improving the design of strengthening methods for damaged RC beams and utilizing the FE model to predict the strengthening capacity of UHPS for damaged concrete structures.

재하상태에 따른 철근콘크리트 보의 탄소섬유쉬트 보강효과 (CFS Strengthening Effect of Reinforced Concrete Beams under Loading States)

  • 김민수;오용복;권영웅
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.757-762
    • /
    • 2000
  • The target of this study is to compare and analyze the strengthening effect of damaged reinforced concrete beams under unloading and loading conditions through the simulation of strengthening condition in real structures. The conclusion of test results are as follows : For the concrete beam wrapped at the side in addition to be strengthened at the bottom, the strength and stiffness increase. although the flexural capacity depends on the strengthening method, it generally shows that the strength improve in the range of 22% to 39% in comparison with the specimen without strengthening. In case of applying th equation suggested by CangaRao & Vijay for the wraped concrete beam, it must be modified because it is likely to overestimate the flexural capacity considering the height of wrapping as the width of concrete. The strength an stiffness of reinforced concrete beams in proportion to the percentage of damage decrease. Damaged beams, which are strengthened by CFS, is structurally efficient and show reduction of strength comparing with the specimen without strengthening but stiffness is increasing.

  • PDF

Strengthening RC frames subjected to lateral load with Ultra High-Performance fiber reinforced concrete using damage plasticity model

  • Kota, Sai Kubair;Rama, J.S. Kalyana;Murthy, A. Ramachandra
    • Earthquakes and Structures
    • /
    • 제17권2호
    • /
    • pp.221-232
    • /
    • 2019
  • Material non-linearity of Reinforced Concrete (RC) framed structures is studied by modelling concrete using the Concrete Damage Plasticity (CDP) theory. The stress-strain data of concrete in compression is modelled using the Hsu model. The structures are analyzed using a finite element approach by modelling them in ABAQUS / CAE. Single bay single storey RC frames, designed according to Indian Standard (IS):456:2000 and IS:13920:2016 are considered for assessing their maximum load carrying capacity and failure behavior under the influence of gravity loads and lateral loads. It is found that the CDP model is effective in predicting the failure behaviors of RC frame structures. Under the influence of the lateral load, the structure designed according to IS:13920 had a higher load carrying capacity when compared with the structure designed according to IS:456. Ultra High Performance Fiber Reinforced Concrete (UHPFRC) strip is used for strengthening the columns and beam column joints of the RC frame individually against lateral loads. 10mm and 20mm thick strips are adopted for the numerical simulation of RC column and beam-column joint. Results obtained from the study indicated that UHPFRC with two different thickness strips acts as a very good strengthening material in increasing the load carrying capacity of columns and beam-column joint by more than 5%. UHPFRC also improved the performance of the RC frames against lateral loads with an increase of more than 3.5% with the two different strips adopted. 20 mm thick strip is found to be an ideal size to enhance the load carrying capacity of the columns and beam-column joints. Among the strengthening locations adopted in the study, column strengthening is found to be more efficient when compared with the beam column joint strengthening.

배근 강화운동이 뇌졸중 환자의 배근력 및 호흡기능에 미치는 영향 (The Effects of Abdominal Muscle Strengthening Exercise on Abdominal Muscle Strength and Respiratory Function in Stroke Patients)

  • 강태욱;정주현
    • 대한통합의학회지
    • /
    • 제7권4호
    • /
    • pp.13-21
    • /
    • 2019
  • Purpose : The purpose of this study was to investigate the effect of abdominal muscle strengthening exercise on abdominal muscle strength and respiratory function in stroke patients. Methods : The subjects were 14 stroke patients (10 males, 4 females) hospitalized at W rehabilitation hospital in Busan City and randomly assigned to 7 exercise groups and 7 control groups. Exercise was performed in combination with an upper and lower extremity pattern of proprioceptive neuromuscular facilitation. Measurements of abdominal muscle strength and respiratory function were made before intervention and 4 weeks after intervention. Abdominal muscle strength was assessed using a digital manual dynamometer, and respiratory function was assessed by spirometry. The collected data were analyzed with a paired t-test and independent t-test and the significance level was set as α =.05. Results : The results showed that applying abdominal muscle strengthening exercise to stroke patients showed a significant increase in abdominal muscle strength and a significant difference between groups (p<.05). Maximal-effort expiratory spirogram (MES) readings were significantly increased in forced vital capacity (FVC), and forced expiratory volume in one second (FEV1), in the exercise group, and there were a significant differences between the groups in terms of FEV1 (p<.05). Slow vital capacity (SVC) was significantly increased in vital capacity (VC), tidal volume (TV), inspiratory reserve volume (IRV), and expiratory capacity (EC), and there were significant differences between the groups in VC, TV, expiratory reserve volume (ERV), EC, and inspiratory capacity (IC) (p<.05). Conclusion : Abdominal muscle strengthening exercise was effective in the abdominal muscle strength of stroke patients, and it was confirmed to have a positive effect on the enhancement of respiratory function. Therefore, it seems that exercise programs for stroke patients with respiratory weakness should include abdominal muscle strengthening exercises.

강판 및 유리섬유쉬트로 전단보강된 철근콘크리트 보의 보강 및 연성 평가 (Strengthening and Ductility Evaluation of Reinforced Concrete Beams Shear-Strengthened by Steel Plates and Glass Fiber Sheets)

  • 문상범;오성영;김상식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.691-696
    • /
    • 2000
  • Shear strengthening method by steel plates and fiber reinforced polymer lamination has recently been favorably selected due to its efficiencies of duration and performance. Shear failure being brittle and difficult to predict, reinforced concrete structures must have sufficient capacity to absorb the energy for shear failure and to support temporarily the overload which may result due to the loss of shear capacity to the structure. These respects being considered, this research has carried out with the purpose of the experimental verification of the shear strengthening effect and ductility evaluation.

  • PDF

Slender RC columns strengthened with combined CFRP and steel jacket under axial load

  • Lu, Yi-yan;Li, Na;Li, Shan;Ou, Tian-yan
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1077-1094
    • /
    • 2015
  • This paper presents an experimental study on the effectiveness of simultaneous application of carbon fiber-reinforced polymer (CFRP) and steel jacket in strengthening slender reinforced concrete (RC) column. The columns were 200 mm square cross section with lengths ranging from 1600 to 3000 mm. Ten columns were tested under axial load. The effects of the strengthening technique, slenderness ratio, cross-section area of steel angle and CFRP layer number were examined in terms of axial load-axial strain curve, CFRP strain, steel strip strain and steel angle strain. The experiments indicate that strengthening RC columns with combined CFRP and steel jacket is effective in enhancing the load capacity, ductility and energy dissipation capacity of RC column. Based on the existing models for RC columns strengthened with CFRP and with steel jacket, a design formula considering a slenderness reduction factor is proposed to predict the load capacity of the RC columns strengthened with combined CFRP and steel jacket. The predictions agree well with the experimental results.

강섬유 보강 기둥의 강도 및 변형 특성 (Strength and Deformation Characteristics of Steel Fiber Reinforced Columns)

  • 장극관;이현호;양승호
    • 콘크리트학회논문집
    • /
    • 제14권1호
    • /
    • pp.49-57
    • /
    • 2002
  • 합성재료중 강섬유(Steel fiber)로 보강된 콘크리트는 보강되지 않은 콘크리트에 비하여 전단, 휨, 피로강도 증진 및 균열제어 효과가 우수한 것으로 평가되고 있다. 특히 전단에 대한 강섬유 보강효과는 취성적인 전단파괴에서의 안정적인 휨 파괴로의 파괴 양상 변화를 보이는 것으로 보고되고 있다. 따라서, 본 연구에서는 기존연구결과 및 총 10개의 실험체를 대상으로 철근콘크리트 기둥에 대한 강섬유의 전단보강 효과를 평가하였다. 실험결과, 강섬유 혼입율 1.5 %에서 전단강도 증진효과가 가장 우수한 것으로 평가되었으며, 연성능력의 증진도 우수한 것으로 평가되었다. 그러나, 강도 및 연성능력 증진에 비하여 강성 및 에너지 소산 능력에 대한 강섬유 보강효과는 다소 미흡한 것으로 평가되었다.