• Title/Summary/Keyword: Strength properties

Search Result 13,797, Processing Time 0.035 seconds

Recycling of Wastepaper(XIV) -The Effect of Amphoteric PAM and Fines on the Dry Strength Properties of Condebelt Press Dried Linerboards- (고지재생연구(제14조) -고온압착건조처리 골판지 원지의 강도에 미치는 양성 PAM과 미세분의 영향-)

  • 최병수;윤혜정;류정용;신종호;송봉근
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.2
    • /
    • pp.24-31
    • /
    • 2001
  • As a novel method to improve strength properties of recycled test liner, Condebelt press drying system was introduced and adopted into Korea. New press drying treatment could enhance the surface and strength properties in accordance with the increase of sheet density. However, Condebelt drying can not increase the density of repeatedly recycled test liner as much as that of virgin UKP and at the same density condition, the strength of Condebelt press dried UKP is greater than that of press dried test liner. In order to increase the strength of test liner, two attempts were tried in this study. First, addition of polyelectrolytes, dry strength agent was investigated with a view to promote the fiber bonding potential of reclaimed corrugated container pulp. Second, blending effect of fines were analyzed in an aims of increasing density and strength of test liner. The results were as follows; Even in the case of test liner densified by Condebelt press dryer, addition of amphoteric PAM as a dry strength agent was effective in increasing strength properties and so the effect of dry strength agent on improving bonding potential of recycled OCC fiber could be confirmed. As an appropriate addition level of amphoteric PAM, below 1% based on dry pulp weight was suggested. Different from virgin UKP, density of recycled test liner can be increased by the blending of OCC fines and strength properties also can be improved. However, excessive blending of OCC fines could result in decreasing of density and serious weakening of test liner. The best blending ration of fines in test liner can be determined as about 30%. Taking into account the fines content in general OCC pulp as 50%, excessive 20% of fines were supposed to be fractionated and removed in order to achieve the best strength of Condebelt press dried test liner.

  • PDF

Quantitative Analysis of Pulp Fiber Characteristics that Affect Paper Properties(I) (종이의 특성에 영향하는 펄프 섬유특성의 정량적 해석(I))

  • 이강진;박중문
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.2
    • /
    • pp.47-54
    • /
    • 1998
  • Refining is one of the most important processes of fiber treatment that provides optical and physical properties of final paper products. The evaluation method of refining progress is usually freeness (CSF) or wetness (SR) test because of its rapidity and convenience. However, there are some deficiencies in using freeness or wetness test to evaluate pulp fibers accurately because its results are more influenced by fines contents than extent of fibers treatment. The objective of this study is to show the deficiency of wetness in evaluating the refining process. For this, beating is done by varying the beating load. Handsheets are made after beating until 25 and $32^{\circ}C$ SR, and then paper properties are measured. Refined fibers are analyzed by fiber length, fines contents, curl, kink, WRV, and zero-span tensile strength. The results show that longer beating time is required to reach the same wetness at lower beating load. There are differences in the average fiber length, distribution curve of fiber length, fines contents, curl, kink, WRV of long fiber fraction, drainage time, and zero-span tensile strength of rewetted sample at different beating load. At the low beating load in the same wetness, apparent density, breaking length, burst strength, and tear strength are higher, while opacity and air permeability are lower than those of the high beating load. Using Page s equation, which shows the relationship among tensile strength, intrinsic fiber strength, and interfiber bonding strength, interfiber bonding strength is calculated and analyzed to explain final paper properties. At $25^{\circ}C$ SR, interfiber bonding strength is only slightly higher at 2.5kgf beating load, while the intrinsic fiber strength is substantially higher. At $32^{\circ}C$ SR, intrinsic fiber strength is a little bit higher at 2.5kgf beating load, and interfiber bonding strength is remarkably higher than those of 5.6kgf beating load. These results can be used to explain the different properties of the final paper at selected beating loads.

  • PDF

Effect of HTT on Bending and Tensile Properties of 2D C/C Composites

  • Dhakate, S.R.;Aoki, T.;Ogasawara, T.
    • Carbon letters
    • /
    • v.6 no.4
    • /
    • pp.234-242
    • /
    • 2005
  • Bending and tensile properties of 2D cross-ply C/C composites with processing heat treatment temperature (HTT) are evaluated. C/C composites used are made from two types of PAN based T700 and M40 carbon fibers with phenolic resin as carbon matrix precursor. Both the types of composites are heat treated at different temperatures (ranging from 750 to $2800^{\circ}C$) and characterized for bending and tensile properties. It is observed that, real density and open porosity increases with HTT, however, bulk density does show remarkable change. The real density and open porosity are higher in case T-700 carbon fiber composites at $2800^{\circ}C$, even though the density of M40 carbon fiber is higher. Bending strength is considerably greater than tensile strength through out the processing HTT due to the different mode of fracture. The bending and tensile strength decreases in both composites on $1000^{\circ}C$ which attributed to decrease in bulk density, thereafter with increase in HTT, bending and tensile strength increases. The maximum strength is in T700 fiber based composites at HTT $1500^{\circ}C$ and in M40 fiber based composites at HTT $2500^{\circ}C$. After attending the maximum value of strength in both types of composite at deflection HTT, after that strength decreases continuously. Decrease in strength is due to the degradation of fiber properties and in-situ fiber damages in the composite. The maximum carbon fiber strength realization in C/C composites is possible at a temperature that is same of fiber HTT. It has been found first time that the bending strength more or less 1.55 times higher in T700 fiber composites and in M40 fiber composites bending strength is 1.2 times higher than that of tensile strength of C/C composites.

  • PDF

Change of Interfacial properties by the Fiber Degradation in the Fiber Reinforced Composites (섬유강화 복합재료에서 섬유열화에 따른 계면특성의 변화)

  • Moon, Chang-Kwon;Kim, Young-Dae;Roh, Tae-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.31-41
    • /
    • 1998
  • Single fiber fragmentation technique was used to evaluate the change of interfacial properties by degradation of fiber tensile strength in the fiber reinforced composites. The influences of fiber tensile strength on the interfacial properties have been evaluated by the fragmentation specimens(weak fiber samples) of glass fiber/epoxy resin that was made using the pre-degraded glass fiber in distilled water at $80^{circ}C$ for specified periods. The effects of the immersion time on the interfacial properties in the distilled water at $80^{circ}C$ also have been evaluated by the fragmentation specimens(original fiber samples) of glass fiber/epoxy resin that was made using the received glass fiber. As the result, the tensile strength of glass fiber was decreased with the increasing of the treatment time in the distilled water at $80^{circ}C$ and the interfacial shear strength was independent of the change of the glass fiber strength in the single fiber fragmentation test. But in the durability test using the single fiber fragmentation specimen, interfacial shear strength decreased with the increasing of the immersion time in distilled water ar $80^{circ}C$. And it turned out that the evaluating of interfacial shear strength using original fiber tensile strength was valuable in the durability test for the water environment by the single fiber fragmentation technique.

  • PDF

An Experimental Study on the High Early Strength Development Properties of Concrete according to Batcher Plant Test and Mock-up Test (배쳐플랜트배합시험 및 실대부재시험을 통한 콘크리트의 조기강도 발현특성에 관한 실험적 연구)

  • Lee, Ji-Hwan;Lee, Jong-suk;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.1-5
    • /
    • 2008
  • In this study, batcher plant composition test and mock-up test were carried out to conduct comparison and analysis on flow behavior and strength properties of concrete at early age. As a result, it was found that slump and amount of air in batcher plant composition test reached the target range. As for compressive strength, composition using HESPC showed the most excellent strength development. In mock-up test which was carried out to find out the strength properties, two methods with specimen and core test body both revealed HESPC as the most excellent composition. However, strength estimation with ultrasonic survey presented less reliable data. As a result of the previously conducted indoor composition test and the mock-up test in this study, target performance of concrete at early age was 4day/cycle. It was found that the optimum conditions that meet the required strength, 5MPa/18hr and 14MPa/36hr in mullion and transom are; curing temperature above 15℃, W/B 45%, unit-water 165kg/㎥ and CHC cement.

  • PDF

Effects of the Glass Fiber Characteristics on the Mechanical Properties of Thermoplastic Composite (유리섬유의 특성이 열가소성 복합재료의 기계적 성질에 미치는 영향)

  • Lee, Jung-Hui;Lee, Jeong-Gwon;Lee, Gyeong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1697-1702
    • /
    • 2000
  • This study has been performed to investigate the effects of glass fiber characteristics on the mechanical properties of thermoplastic composite. The surface of glass fiber was coated with the silan e to enhance the bonding strength between fiber and matrix. A micro-droplet pull-off test was performed to investigate the influence of the silane concentration on the bonding strength. The maximum bonding strength was observed around 10.8% silane concentration. In order to examine the influence of the fiber length and fiber content on the properties of the composite, the composite materials involving tile fiber lengths of 5mm, 10mm, 15mm 20mm, and 25mm were tested. The composites used contain 20%, 30%, and 40% by weight of glass fibers. Tension and flexural tests were performed to investigate their mechanical properties of the composites. The tensile strength and tensile modulus of the composite increase with increasing the glass fiber content. The tensile modulus increases slightly with increasing the fiber length. The maximum tensile strength is observed around the fiber length of 15-20mm. The flexural modulus and strength also increase slightly with increasing the fiber length.

A Study on the Strength Characteristics of Model Ice for Warm-up Time during Model Ice Preparation (모형빙 생성 시 승온 시간에 따른 모형빙의 강도 특성 연구)

  • Jeong, Seong-Yeob;Ha, Jung-Seok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.1
    • /
    • pp.15-22
    • /
    • 2020
  • Understanding the strength characteristics of model ice is an important issue for model testing in an ice model basin to estimate the ship performance in ice. In particular, the mechanical properties of the model ice including elastic modulus, flexural strength and compressive strength are key consideration factors. In order to understand the characteristics of the model ice during warm-up phase at KRISO's ice model basin, the strength properties are tested in this study. The infinite plate-bending method, in-situ cantilever beam test and ex-situ uniaxial compressive test are conducted to determine the strength properties of model ice. The strength characteristics of the model ice are then analyzed in terms of the warm-up phase and seasonality. These results could be valuable to quality control of the model ice characteristics in KRISO's ice model basin and to better understand the variations in strength properties during the ice model tests.

Strength Properties of Concrete using Non-Washed Recycled Coarse Aggregate (비세척된 재생 조골재 콘크리트의 강도특성)

  • 윤현도;김문섭;임경택;정수영;윤석천
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.489-494
    • /
    • 1998
  • This paper describes the possibility to reuse concrete waste produced by demolition of reinforced concrete structures as aggregate for concrete from the viewpoint of strength. Concrete rubble obtained from the demolished buildings at Taejon were crushing machine to reuse as coarse aggregate. The strength properties, such as compressive strength, splitting tensile strength, bending strength and shear strength, of recycled and normal concrete were examined and compared experimentally when water cement ratio was varied. From the results of this study, it was thought that in case of non-washed aggregate concrete, strength properties of recycled coarse aggregate is similar to that of normal concrete, In W/C 55%~45%, stress-strain curve of recycled concrete shows more stable than that of normal concrete, while in W/C 35%, it shows brittle behavior.

  • PDF

Mechanical Properties and Mix Proportion of High-Strength Concrete over 60MPa for PSC Bridges (PSC 교량용 설계강도 60 MPa 이상 고강도 콘크리트의 실용화를 위한 배합 및 역학적 특성에 관한 연구)

  • Lee, Joo-Ha;Jung, Hyun-Suck;Cheong, Hai-Moon;Ahn, Tae-Song;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.9-12
    • /
    • 2006
  • Many researches have been carried out on development of high-strength concrete, but most researches have been focused on building structures such as a high-rise building. However today, the demand of high-strength concrete for civil structures like a PSC bridge is increasing steadily. In addition, the current design code based on experimental results of normal strength concrete needs to be modified for high-strength concrete structures. Therefore, it is necessary to perform a research on mechanical properties and mix proportion of high-strength concrete suitable for PSC bridges. The primary purpose of this study was to develop the high-strength concrete mixtures which can be applied to PSC bridges and to evaluate mechanical properties of high-strength concrete.

  • PDF

Strength Characteristics of Concrete Containing Blast-Funrnace Slag as Coarse Aggregate (고로슬래그를 굵은골재로 이용한 콘크리트의 강도특성)

  • 한상호
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.59-68
    • /
    • 2000
  • A series of experiments were performed to investigate the strength characteristics of concrete which contain air cooled blast-furnace slag as coarse aggregate. The slag is a by product of GISC. The experimental conditions are varied with three different W/C(45%, 50%, 55%) and the weight of water and S/a are constant. The strength properties of the concrete at 7days, 28days, 90days are examined. Also the same strength properties are examined for the normal concrete which contain river gravel and crushed stone respectively as coarse aggregate. As the comparison results of the strength properties, it was found that the compressive strength development of concrete containing blast-furnace slag is better than that of concrete using river gravel at early age, however this is adversely at long-term age, and the tensile and flexural strength of the concrete were not nearly affected by water-cement ratio.