• 제목/요약/키워드: Strength properties

검색결과 13,825건 처리시간 0.037초

전력기기용, 에폭시/마이크로 실리카 및 알루미나 복합제의 전기적·기계적 파괴 강도 특성 (Electrical and Mechanical Strength Properties of Epoxy/Micro Silica and Alumina Composites for Power Equipment)

  • 박주언;박재준
    • 한국전기전자재료학회논문지
    • /
    • 제31권7호
    • /
    • pp.496-501
    • /
    • 2018
  • In this study, we prepared 40, 45, 50, 55, 60, 65, and 70 wt% content composites filled in epoxy matrix for two micro silica and three micro alumina types for use as a GIS heavy electric machine. As a filler type of epoxy composite, micro silica composites showed excellent AC breakdown strength properties compared to micro alumina composites in the case of electrical properties of micro silica and alumina. The electrical breakdown properties of micro silica composites increased with increasing filler content, whereas those of micro alumina decreased with increasing filler content. In the case of mechanical properties, the micro silica composite showed improved tensile strength and flexural strength compared with the micro alumina composite. In addition, mechanical properties such as tensile strength and flexural strength of micro silica and alumina composites decreased with increasing filler content. This is probably because O-H groups are present on the surface of silica in the case of micro silica but are not present on the surface of alumina in the case of micro alumina.

Estimation of tensile strength of ultramafic rocks using indirect approaches

  • Diamantis, Konstantinos
    • Geomechanics and Engineering
    • /
    • 제17권3호
    • /
    • pp.261-270
    • /
    • 2019
  • Because the estimation of the tensile strength is very important in any geotechnical project, many attempts have been made to determine. But the immediate determination of the tensile strength is usually difficult owing to well-shaped specimens, time-consuming, expensive and sometimes unreliable. In this study, engineering properties of several ultramafic rock samples were measured to assess the correlations between the Brazilian Tensile Strength (BTS) and degree of serpentinization, physical, dynamic and mechanical characteristics. For this purpose, a comprehensive laboratory testing program was conducted after collecting thirty-two peridotite and fifty-one serpentinite rock samples, taken from central Greece, in accordance with ASTM and ISRM standards. In addition, a representative number of them were subjected to petrographic studies and the obtained results were statistically described and analysed. Simple and multiple regression analyses were used to investigate the relationships between the Brazilian Tensile Strength and the other measured properties. Thus, empirical equations were developed and they showed that all of the properties are well correlated with Brazilian Tensile Strength. The curves with the $45^{\circ}$ line (y = x) were extracted for evaluating the validity degree of concluded empirical equations which approved approximately close relationships between Brazilian Tensile Strength and the measured properties.

Enhancing mechanical and durability properties of geopolymer concrete with mineral admixture

  • Jindal, Bharat Bhushan;Singhal, Dhirendra;Sharma, Sanjay;Parveen, Parveen
    • Computers and Concrete
    • /
    • 제21권3호
    • /
    • pp.345-353
    • /
    • 2018
  • This paper approaches to improve the mechanical and durability properties of low calcium fly ash geopolymer concrete with the addition of Alccofine as a mineral admixture. The mechanical and durability performance of GPC was assessed by means of compressive strength, flexural strength, permeability, water absorption and permeable voids tests. The correlation between compressive strength and flexural strength, depth of water penetration and percentage permeable voids are also reported. Test results show that addition of Alccofine significantly improves the mechanical as well as permeation properties of low calcium fly ash geopolymer concrete. Very good correlations were noted between the depth of water penetration and compressive strength, percentage permeable voids and compressive strength as well as between compressive strength and flexural strength.

이방압밀이 흙의 강도에 미치는 영향 (Effects of Anisotropic Consolidation on Strength of Soils)

  • 강병희
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.3-14
    • /
    • 2000
  • Anisotropic consolidation, shear, a transportational component during or after deposition each may produce anisotropic fabrics, which result in the anisotropic properties of soils. Nevertheless, the isotropically consolidated compression triaxial tests are commonly used in practice to determine the strength of the anisotropically consolidated soils because of their practicality and simplicity. In this paper the effects of anisotropic consolidation on the strength properties of soils are discussed. For the sandy soils consolidated under a constant vertical consolidation pressure, the deformation modulus decreases with decreasing consolidation pressure ratio($\sigma$$\sub$3c/'/$\sigma$ sub 1c/'), but the liquefaction resistance increases. For the saturated cohesive soils, both the undrained shear strength and undrained creep strength decrese with decreasing the consolidation pressure ratio. When the in-situ strength properties of the anisotropically and normally consolidated soils are determined by the isotropically consolidated tests, the undrained shear strength and creep strength of saturated cohesive soils as well as the deformation modulus of sandy soils are measured to be higher than the rear in-situ values. This, therefore, could lead to a dangerous judgement in stability analysis

  • PDF

침엽수 미표백 크라프트펄프와 재생고지를 이용한 단층지와 이층지의 물성 연구 (Properties of Single-and Two-layered Handsheets Formed with Sw-UKP and OCC)

  • 박용;이학래
    • 펄프종이기술
    • /
    • 제30권2호
    • /
    • pp.5-12
    • /
    • 1998
  • Exploitation of the papermaking technology to reduce the strength loss that accompanies when using recycled papers as raw materials for papermaking is one of the most important issues imposed upon today's paper industry. Multi-layer sheet forming technology has been suggested as a way that provides some answers to this issue. In this study strength properties of single- and two-layer handsheets formed with recycled fiber and unbleached softwood kraft pulp have been examined to quantify the benefits when using two-layer sheet forming technology rather than a conventional single layer sheet forming precess. Single- and two-layer handsheets were made from 50% of OCC and 50% of Sw-UKP and their strength properties were evaluated. Also the strength properties made from Sw-UKP and OCC sheets were determined. A multihead, which can be attached on the top of hand- sheet former, was used to form two-layer sheets. Maximum strength properties could be obtained in the freeness range of 500∼300mL CSF for Sw-UKP Most of the strength properties was reduced by 30∼35% when 50% OCC was blended with UKP. Decrease of strength properties, however, could be reduced by employing a two-layer sheet forming method. Creator strengths could be obtained when UKP was positioned at the top layer of two layered sheets indicating greater UKP fines retention due to the filtration effect of the OCC layer formed prior to UKP layer contributed the strength improvement. Two-layer sheet showed lower Scott internal bond strength than single layer sheet. By incorporating some of UKP fibers into OCC layer this reduction could be reduced.

  • PDF

Formula to identify the Influence of steel fibres on the mechanical properties of HPC

  • Philip, Nivin;Anil, Sarah
    • Computers and Concrete
    • /
    • 제25권5호
    • /
    • pp.479-484
    • /
    • 2020
  • This work performed to analyses the impact of hooked end steel fibres on the mechanical properties of high performance concrete. The mechanical properties considered incorporate compressive strength, split tensile strength and flexural strength. Taking in to thought parameters, such as, volume fraction of fibres, fibre aspect ratio and grade of concrete, a logical strategy called Taguchi technique was utilized to discover the ideal blend of factors. L9 Orthogonal Array (OA) of Taguchi network comprising of three variables and three dimensions is utilized in this work. The evaluations of concrete considered were M60, M80 and M100. M60 contained 15% of metakaolin as bond swap though for M80 it was 5% of metakaolin and for M100 it was 10% metakaolin and 10% of silica smolder. The volume portion of fiber was fluctuated by 0.5%; 1% and 1.5% and the viewpoints proportions considered were 50, 60 and 80. The test outcomes demonstrate that incorporation of steel fibres enhance significantly the the strength characteristics of concrete, predominantly the splitting tensile strength and flexural strength. In light of relapse investigation of the test information scientific models were produced for compressive strength, split tensile strength and flexural strength of the steel fibre-reinforced high performance concrete.

FRACTURE OF HIGH-STRENGTH CONCRETE : Implications for Structural Applications

  • Darwin, David
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.11-30
    • /
    • 2000
  • Structural properties of reinforced concrete, such as bond and shear strength, that depend on the tensile properties of concrete are much lower for high-strength concrete than would be expected based on relationships developed for normal-strength concretes. To determine the reason for this behavior, studies at the University of Kansas have addressed the effects of aggregate type, water-cementitious material ratio, and age on the mechanical and fracture properties of normal and high-strength concretes. The relationships between compressive strength, flexural strength, and fracture properties were studied. At the time of test, concrete ranged in age from 5 to 180 days. Water-cementitious material ratios ranged from 0.24 to 0.50, producing compressive strengths between 20 MPa(2, 920 psi) and 99 MPa(14, 320psi). Mixes contained either basalt or crushed limestone aggregate, with maximum sizes of 12mm(1/2in). or 19mm(3/4in). The tests demonstrate that the higher quality basalt coarse aggregate provides higher strengths in compression than limestone only for the high-strength concrete, but measurably higher strengths in flexure, and significantly higher fracture energies than the limestone coarse aggregate at all water-cementitious material ratios and ages. Compressive strength, water-cementitious material ratio, and age have no apparent relationship with fracture energy, which is principally governed by coarse aggregate properties. The peak bending stress in the fracture test is linearly related to flexural strength. Overall, as concrete strength increases, the amount of energy stored in the material at the peak tensile load increases, but the ability of the material to dissipate energy remains nearly constant. This suggests that, as higher strength cementitious materials are placed in service, the probability of nonductile failures will measurably increase. Both research and educational effort will be needed to develop strategies to limit the probability of brittle failures and inform the design community of the nature of the problems associated with high-strength concrete.

  • PDF

Residual properties of high-strength fiber reinforced concrete after exposure to high temperatures

  • Tang, Chao-Wei
    • Computers and Concrete
    • /
    • 제24권1호
    • /
    • pp.63-71
    • /
    • 2019
  • Thermal energy from high temperatures can cause concrete damage, including mechanical and chemical degradation. In view of this, the residual mechanical properties of high-strength fiber reinforced concrete with a design strength of 75 MPa exposed to $400-800^{\circ}C$ were investigated in this study. The test results show that the average residual compressive strength of high-strength fiber reinforced concrete after being exposed to $400-800^{\circ}C$ was 88%, 69%, and 23% of roomtemperature strength, respectively. In addition, the benefit of steel fibers on the residual compressive strength of concrete was limited, but polypropylene fibers can help to maintain the residual compressive strength and flexural strength of concrete after exposure to $400-600^{\circ}C$. Further, the load-deflection curve of specimen containing steel fibers exposed to $400-800^{\circ}C$ had a better fracture toughness.

인장주근이 부식한 RC보의 내력성능 평가에 관한 연구 (Study on Evaluation of Strength Properties of RC Beams Damaged by Corrosion of Tension Main Rebar)

  • 이한승
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.665-670
    • /
    • 1998
  • This study was carried out to investigate quantitatively the relationship between the degree of rebar corrosion and the strength of reinforced concrete beams. After producing equations for the relationship between both the tensile properties of rebars and bond properties and the corrosion percentage of rebars. Finite element analysis and bending tests were conducted for RC beams damaged by corrosion of tension main rebar. As a result, it was made that the strength of RC beams damged by corrosion could be practically simulated by FEM using experimentally determined material representing the bond properties and the mechanical properties of corroded rebars.

  • PDF

석회석슬래그 시멘트의 강도향상 및 미세분석 : 황산알루미늄의 역할 (Strength improvement and micro analysis of limestone-slag cement : role of aluminum sulfate)

  • 왕의성;왕소용
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.161-162
    • /
    • 2023
  • Limestone slag cement is a green and sustainable building material with huge market potential. However, its shortcoming of low early compressive strength needs to be improved. A method of using aluminum sulfate to improve the early strength of ternary mixed mortar was proposed, and its effect and optimal dosage were tested. Macroscopic properties such as mechanical properties and surface electrical resistivity were measured at different dosages (0%, 1%, 2%, 3%). The microstructure and products of the mixtures were tested in detail, including by scanning electron microscopy, thermogravimetric analysis, and X-ray diffraction. The results show aluminum sulfate enhances mechanical properties and significantly increases surface electrical resistivity. The 1% and 2% doses had no adverse effects on the 28-day mechanical properties, while the 3% dose reduced the 28-day strength. Considering the changes in mechanical properties and surface electrical resistivity, 1% aluminum sulfate is the optimal dosage.

  • PDF