• 제목/요약/키워드: Strength of Concrete

검색결과 10,920건 처리시간 0.036초

철근콘크리트보의 전단균열강도에 대한 콘크리트강도의 영향 (Effect of Concrete Strength on Shear Cracking Strength in Reinforced Concrete Beams)

  • 김우;고광일;김대중
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.83-87
    • /
    • 1990
  • The effect of concrete strength on shear cracking strength in reinforced concrete beams is investigated analytically. The quantitative response of reinforced concrete beam-end-part with varing concrete stiffness, which is a function of concrete compressive strength, is examined utilizing a finite element mothod. The result indicates that the severer shear stress localization/concentration takes place in the beam having higher concrete strength. Thus the increase ratio of shear cracking strength with respect to concrete compressive strength decreases as the concrete strength becoms higher.

  • PDF

Concrete Strength Estimating at Early Ages by the Equivalent Age

  • Kim, Moo-Han;Nam, Jae-Hyun;Khil, Bae-Su
    • KCI Concrete Journal
    • /
    • 제14권2호
    • /
    • pp.81-85
    • /
    • 2002
  • The strength development of concrete is influenced by temperature and cement type which greatly affect hydration degree of cement. There is not pertinent concrete strength management method in korea. There are several methods for estimating the in-place strength of concrete. One such method is the maturity concept. The maturity concept is based on the fact that concrete gains strength gradually as a result of chemical reactions between cement and water; and for a specific concrete mixture, strength at any age and at normal conditions is related to the degree of hydration. The rate of hydration and, therefore, strength development of a given concrete will be a function of its temperature. Thus, strength of concrete depends on its time-temperature history. The goals of the present study are to investigate a relationship between strength of high-strength concrete and maturity that is expressed as a function of an integral of the curing period and temperature and predict strength of concrete.

  • PDF

고강도 콘크리트 기둥의 거동에 미치는 콘크리트 강도와 띠철근의 영향 (Influence of Concrete Strength and Lateral Ties on Behavior of High-Strength Concrete Columns)

  • 이영호;정헌수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.245-253
    • /
    • 2002
  • This study was focused on the effect of concrete strength and lateral ties of concrete columns using high-strength concrete. Thirty-six concrete columns with 20cm square cross-section were tested. Experimental parameters included the concrete strength, the distribution of longitudinal bars and the volumetric ratio, yield strength, spacing of lateral ties. From the experiments, we found that: 1) the increasing rate of the strength and ductility of concrete columns caused by confinement of lateral ties was decreasing, as the concrete strength increased. 2) The high volumetric ratio and the reduction of tie spacing had a tendency to enhance the strength and improve the ductility. 3) The high-strength concrete columns required high volumetric ratio of lateral ties to maintain the proper strength and ductility. It was observed that the current AIK design code to specify the maximum tie spacing of high-strength concrete columns led to the poor strength and ductility for seismic design.

양생온도 변화가 고성능 콘크리트의 압축강도에 미치는 영향에 관한 연구 (A Study on the Effects of Curing Temperature for Compressive Strength of High Performance Concrete)

  • 노인철
    • 한국건축시공학회지
    • /
    • 제2권4호
    • /
    • pp.163-168
    • /
    • 2002
  • The object of this study is to define the characteristics of high performance concrete with varing compressive strength of concrete and curing temperature. The major test variables are 1) high strength concrete(500kg/$cm^2$) and ordinary strength concrete(240kg/$cm^2$) compressive strength, 2) curing temperature and condition, 3) concrete curing age, 4) three types of cement. From the test results were shown that curing temperature and curing conditions were also very effective for high strength concrete and ordinary strength concrete, and concrete were largely effected by cement type and temperature during the hydration reaction process. This paper describes the effect of curing temperature for strength and characteristics of high performance concrete.

Statistical division of compressive strength results on the aspect of concrete family concept

  • Jasiczak, Jozef;Kanoniczak, Marcin;Smaga, Lukasz
    • Computers and Concrete
    • /
    • 제14권2호
    • /
    • pp.145-161
    • /
    • 2014
  • The article presents the statistical method of grouping the results of the compressive strength of concrete in continuous production. It describes the method of dividing the series of compressive strength results into batches of statistically stable strength parameters at specific time intervals, based on the standardized concept of "concrete family". The article presents the examples of calculations made for two series of concrete strength results, from which sets of decreased strength parameters were separated. When assessing the quality of concrete elements and concrete road surfaces, the principal issue is the control of the compressive strength parameters of concrete. Large quantities of concrete mix manufactured in a continuous way should be subject to continuous control. Standardized approach to assessing the concrete strength proves to be insufficient because it does not allow for the detection of subsets of the decreased strength results, which in turn makes it impossible to make adjustments to the concrete manufacturing process and to identify particular product or area on site with decreased concrete strength. In this article two independent methods of grouping the test results of concrete with statistically stable strength parameters were proposed, involving verification of statistical hypothesis based on statistical tests: Student's t-test and Mann - Whitney - U test.

Prediction of compressive strength of concrete using multiple regression model

  • Chore, H.S.;Shelke, N.L.
    • Structural Engineering and Mechanics
    • /
    • 제45권6호
    • /
    • pp.837-851
    • /
    • 2013
  • In construction industry, strength is a primary criterion in selecting a concrete for a particular application. The concrete used for construction gains strength over a long period of time after pouring the concrete. The characteristic strength of concrete is defined as the compressive strength of a sample that has been aged for 28 days. Neither waiting for 28 days for such a test would serve the rapidity of construction, nor would neglecting it serve the quality control process on concrete in large construction sites. Therefore, rapid and reliable prediction of the strength of concrete would be of great significance. On this backdrop, the method is proposed to establish a predictive relationship between properties and proportions of ingredients of concrete, compaction factor, weight of concrete cubes and strength of concrete whereby the strength of concrete can be predicted at early age. Multiple regression analysis was carried out for predicting the compressive strength of concrete containing Portland Pozolana cement using statistical analysis for the concrete data obtained from the experimental work done in this study. The multiple linear regression models yielded fairly good correlation coefficient for the prediction of compressive strength for 7, 28 and 40 days curing. The results indicate that the proposed regression models are effectively capable of evaluating the compressive strength of the concrete containing Portaland Pozolana Cement. The derived formulas are very simple, straightforward and provide an effective analysis tool accessible to practicing engineers.

고강도, 고유동 Belite 콘크리트의 부착성능 (Bond Strength of Reinforcing Steel to High Strength, High Flow Belite Concrete)

  • 김상준;조필규;이세웅;최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.653-660
    • /
    • 1998
  • Bond strength of reinforcing bar to high-performance concrete using belite cement is explored using beam end test specimen. The key parameters for the bond test are slump of concrete, top bar effect, and strength of concrete in addition to concrete covers. Specimen failed in the typical brittle bond failure splitting the concrete cover as the wedging action. The test results show that the specimens with belire cement concrete show higher bond strength than those with portland cement concrete. Bond strength of the top bar is less than bond strength of bottom bar, but the top bar factor satisfies the modification factor for top reinforcement. The results also show that the bond strength is function of the square root of concrete compressive strength and cover thickness. The recently developed high-strength and high-slump concrete with belite cement performs well in terms of bond strength to reinforcing steel.

  • PDF

Experimental investigation on steel-concrete bond in lightweight and normal weight concrete

  • Chen, How-Ji;Huang, Chung-Ho;Kao, Zhang-Yu
    • Structural Engineering and Mechanics
    • /
    • 제17권2호
    • /
    • pp.141-152
    • /
    • 2004
  • The bonding behaviors of Lightweight Aggregate Concrete (LWAC) and normal weight concrete were investigated experimentally. Pull-out tests were carried out to measure the bond strengths of three groups of specimens with compressive strength levels of 60, 40, and 20 MPa, respectively. Test results showed that the difference in the bond failure pattern between LWAC and normal weight concrete was significant as the concrete compressive strength became lower than 40 MPa. The corresponding bond strengths of LWAC were lower than that for normal weight concrete. As the compressive strength of concrete became relatively high (> 40 MPa), a bond failure pattern in normal weight concrete occurred that was similar to that in LWAC. The bond strength of LWAC is higher than that for normal weight concrete because it possesses higher mortar strength. Stirrup use leads to an increase of approximately 20% in nominal bond strength for both types of concrete at any strength level.

Effect of moisture on the compressive strength of low-strength hollow concrete blocks

  • Syiemiong, Hopeful;Marthong, Comingstarful
    • Computers and Concrete
    • /
    • 제23권4호
    • /
    • pp.267-272
    • /
    • 2019
  • In order to study the effect of moisture on the compressive strength of low-strength hollow concrete blocks, an experimental study was carried out on 96 samples of locally manufactured hollow concrete blocks collected from three different locations. Uniaxial compression tests were conducted on dry specimens and three types of saturated specimens with moisture contents of 30%, 50% and 80% respectively. The range of moisture content adopted covered the range within which the concrete block samples are saturated in the dry and monsoon seasons. The compressive strength of low-strength hollow concrete blocks decreases with increase in moisture content and the relationship between compressive strength of hollow concrete blocks and their moisture content can be considered to be linear. However, the strength degradation of 30% moist concrete blocks with respect to dry blocks is relatively low and can be considered to be comparable to dry concrete blocks. A formula indicating the relationship between the moisture content and compressive strength of low-strength hollow concrete blocks is also proposed.

덱크플레이트를 사용한 경량콘크리트 슬래브와 철골보의 합성보에서 쉬어코넥터의 내력에 관한 연구 (A Study on Strength of shear Connectors in Composite Beams of Steel and Lightweight Concrete Slabs with Deck Plate)

  • 김종식;박성무
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.293-298
    • /
    • 1995
  • The strength of shear connectors embedded in lightweight concrete slab with deck plate is influenced by various factors of deck plate, shear conncetor and concrete. Generally, it is reported that the strength of shear connector in lightweight concrete decreases in comparison with that in normal concrete. So this paper is to use compressive strength of lilghtweight concrete, width-height ratio of deck plate, and cross sectional area of shear conncetor as variables, to evaluate the strength of shear conncetors in composite beam of steel and lilghtweight concrete slabs with deck plate, and then to suggest the reasonable strength equation by comparing the push-out test results with establixhed strength formula. As the result of 24 specimens test, in case of lightweight concrete slab with deck plate, it has showed that in the same strength, the strength of shear connector decreased about 10~20% in comparison with that in normal concrete. In spite of lightweight concrete, the test results were closely approached the established strength formula of shear connector using Fisher's reduction coefficient.

  • PDF