• Title/Summary/Keyword: Strength decrease

Search Result 2,827, Processing Time 0.033 seconds

The effect of hydrated lime on the petrography and strength characteristics of Illite clay

  • Rastegarnia, Ahmad;Alizadeh, Seyed Mehdi Seyed;Esfahani, Mohammad Khaleghi;Amini, Omid;Utyuzh, Anatolij Sergeevich
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.143-152
    • /
    • 2020
  • In this research, soil samples of the Kerman sedimentary basin, Iran, were investigated through laboratory tests such as petrography (Scanning Electron Microscopy (SEM), X-Ray Fluorescence Spectroscopy (XRF) and X-Ray Diffraction (XRD)), physical and mechanical characteristics tests. The soil in this area is dominantly CL. The petrography results showed that the dominant clay mineral is Illite. This soil has made some problems in the earth dams due to the low shear strength. In this study, a set of samples were prepared by adding different amounts of lime. Next, the petrography and strength tests at the optimum moisture content were performed. The results of SEM analysis showed substantial changes in the soil structure after the addition of lime. The primary structure was porous and granular that was changed to a uniform and solid after the lime was added. According to XRD results, dominant mineral in none stabilized soil and stabilized soil are Illite and calcite, respectively. The pozzolanic reaction resulted in the reduction of clay minerals in the stabilized samples and calcite was known as the soil hardener material that led to an increase in soil strength. An increase in the hydrated lime leads to a decrease in their maximum dry unit weight and an increase in their optimum moisture content. Furthermore, increasing the hydrated lime content enhanced the Unconfined Compressive Strength (UCS) and soil's optimum moisture. An increase in the strength is significantly affected by the curing time and hydrated lime contents, as the maximum compressive strength is achieved at 7% hydrated lime. Moreover, the maximum increase in the California Bearing Ratio (CBR) achieved in clay soils mixed with 8% hydrated lime.

Numerical simulations of progression of damage in concrete embedded chemical anchors

  • Sasmal, S.;Thiyagarajan, R.;Lieberum, K.H.;Koenders, E.A.B.
    • Computers and Concrete
    • /
    • v.22 no.4
    • /
    • pp.395-405
    • /
    • 2018
  • In this paper, the performance of post-installed adhesive bonded anchor embedded in concrete is assessed using numerical simulations. This study aims at studying the influence of parameters on the performance of a chemically bonded anchorage system. Non-linear finite element modelling and simulations are carried out by properly using the material properties and phenomenon. Materials parameters such as characteristic length, fracture energy, damage criteria, tension retention and crack width of concrete and interface characteristics are carefully assigned so as to obtain a most realistic behaviour of the chemical anchor system. The peak strength of two different anchor systems obtained from present numerical studies is validated against experimental results. Furthermore, validated numerical models are used to study the load transferring mechanism and damage progression characteristics of various anchors systems where strength of concrete, strength of epoxy, and geometry and disposition of anchors are the parameters. The process of development of strain in concrete adjacent to the anchor and energy dissipated during the course of damage progression are analysed. Results show that the performance of the considered anchorage system is, though a combined effect of material and geometric parameters, but a clear distinction could be made on the parameters to achieve a desired performance based on strength, slip, strain development or dissipated energy. Inspite the increase in anchor capacity with increase in concrete strength, it brings some undesirable performance as well. Furthermore, the pullout capacity of the chemical anchor system increases with a decrease in disparity among the strength of concrete and epoxy.

Effect of Acupuncture Combined with Wooden Neck Pillow Self-exercise Program on Cervical Curvature Measurement Methods and Deep Flexor Muscle Strength (경침 자가 운동 프로그램을 병행한 침 치료가 경추 만곡도와 심부 굴곡근 근력 변화에 미치는 영향)

  • Kwon, Jeonggook;Keum, Dongho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.27 no.1
    • /
    • pp.37-51
    • /
    • 2017
  • Objectives This study was designed to identify the effect of acupuncture combined with wooden neck pillow self-exercise program (WSP). Methods 25 eligible subjects with chronic neck pain were recruited from September 2015 to August 2016. Subjects were treated by acupuncture twice a week for 4 weeks, also were educated WSP and exercised every day for 4 weeks. They were assessed using PI-NRS, NDI and the maximum muscle strength of deep cervical flexor muscles (DCF) before and after treatment. Also the Cobb's angle (C1-C7), Ishihara index, Park method were assessed for evaluating the radiographical changes. Variables were compared using paired t-test. And correlates analysis was used for analyzing relationship between differentials in the maximum muscle strength of DCF and differentials in cervical spine curvature measurement methods. Results Among the 25 subjects, 4 subjects were lost to follow-up or excluded in accordance with the criteria. Significant differences on NRS, NDI and the maximum muscle strength of DCF were seen after treatment (p<0.001). In radiological finding, cervical spine curvature measurement methods were significantly increased (p<0.001, p<0.05, p<0.05). Differentials in the maximum muscle strength of DCF significantly correlates to differentials in Ishihara index (R=0.479, p<0.05). Conclusions Acupuncture combined with WSP may decrease neck pain intensity and associated disability, and also increase the muscle strength of DCF and cervical lordosis, in patients with chronic neck pain. Especially, Improving the muscle strength of DCF has a relationship with improving Ishihara index. However, due to the design of this study, this treatment can not be compared with other treatments. Future randomized project should be needed.

The flexural strength Changes by the Low Temperature Degradation of Uncolored zirconia Ceramic for All Ceramic Restoration (전부도재 수복을 위한 무색지르코니아 세라믹의 저온열화에 따른 굴곡강도 변화)

  • Kim, Jung-Sook
    • Journal of Technologic Dentistry
    • /
    • v.31 no.2
    • /
    • pp.39-44
    • /
    • 2009
  • In the orthopedic field which firstly used zirconia as artificial joints, researchers had studied the reasons for collapsing zirconia used as restorative material by accumulated inner cracks in several years and they found out Low Temperature Degradation is one of the reasons. In the dentistry field, it has not been too long since they used zirconia as the cores of all-ceramic restoration; however, the study is needed as prophylactic measure against Low Temperature Degradation which can be caused by saliva wetting the mouth all the time and frictional forces such as bite pressure and masticatory pressure. Artificial aging by autoclaving is used because there are difficulties of testing in the patient's mouth. To study the changes in the material properties, the flexural strength of dental zirconia ceramic is measured before and after the test. The following are the result of the test. 1) The zirconia blocks in the autoclaves at $130^{\circ}C$ and $200^{\circ}C$ are phase-shifted tetragonal to monoclinic by Low Temperature Degradation. 2)The non-autoclaved specimens have the average fractural strength of 1346.4MPa, the specimens autoclaved at $130^{\circ}C$ have 1226.4Mpa and the specimens autoclaved at $200^{\circ}C$ have 1024.1MPa. The tests show that as the temperature increases, the flexural strength tend to decrease and the differences are noticeable(p<0.001). 3)Through the Duncan's post-hoc test, the differences in flexural strength of the 3 groups were listed in order of strength like normal temperature>at $130^{\circ}C$ autoclave low temperature degradation> at $200^{\circ}C$ autoclave low temperature degradation.

  • PDF

The Application of Maturity Method on Whitetopping Construction (성숙도 개념을 이용한 Whitetopping 포장의 현장 적용)

  • Jung, Jong-Suk;Cho, Yoon-Ho;Lee, Kang-Won
    • International Journal of Highway Engineering
    • /
    • v.7 no.1 s.23
    • /
    • pp.83-92
    • /
    • 2005
  • Maturity method is a non-destructive method for estimating in-place concrete strength as a function of time and temperature. The main objective is to use maturity method determining joint sawing and traffic opening time for whitetopping construction in Korea. Another objective is to investigate the influence of air temperature in the correspondence to slab temperature and maturity value. For determining the joint sawing and traffic opening time, thermachron i-button and strain gage were inserted in the fresh concrete in the slab and a maturity value was calculated at desired times. In-place strength was then estimated from a pre-established relationship between maturity values and compressive strength. The results showed that there are significant differences between the estimated strength obtained from maturity curve and in-place concrete strength. The reasons are that the gain of in-place concrete strength was influenced by several factors in the field such as curing conditions, air temperature, and wind speed etc. Also, the results showed that air temperature had significant influence on slab temperature and maturity value The slopes of maturity curves exponentially decrease as air temperature decreases. This means that maturity value sharply dropped as air temperature decreases.

  • PDF

Mechanical Strength Characteristics of Fiber Bragg Gratings with Fabrication Process (광섬유 브래그 격자의 제작 방법에 따른 기계적 강도 특성)

  • Park S. O.;Kim C. G.;Kang D. H.
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.16-22
    • /
    • 2005
  • Application fields on structural health monitoring of fiber Bragg gratings (FBGs) are gradually expanded even to a primary structure as well as a secondary structure and a specimen. For the reason, verification for the reliability of FBGs such as signal characteristics and mechanical strength becomes much more important. In this study, mechanical strength characteristics of FBGs with their fabrication process and reflectivity are investigated with various grating lengths. From the results of tension tests, it is shown that the mechanical strength of optical fibers decreases about $50\%$ just by jacket stripping and the amount of decrease is dependent on stripping methods. About $55\%$ of mechanical strength of stripped optical fibers decreases if gratings are formed in the core and it is regardless of grating lengths and reflectivity. However, the width of strength distribution increases relative to increases in reflectivity.

Effect of Biomineralization on the Strength of Cemented Sands (미생물에 의해 생성된 광물질이 고결모래의 강도에 미치는 영향)

  • Park, Sung-Sik;Kim, Wha-Jung;Lee, Jun-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.5
    • /
    • pp.75-84
    • /
    • 2011
  • There are some kinds of microorganisms within soils which can precipitate some minerals such as calcite under suitable conditions. Such precipitated calcites within pores of soil may reduce permeability and also cement soil particles. In this study, whether such microorganisms can fill pores within soil and increase the strength is investigated. Basillus pasteurii was repeatedly injected into weakly cemented sand with 3% cement ratio up to 10 times for 20 days. Then, cemented sand injected with microorganisms was tested for an unconfined compressive strength and evaluated for filling voids between soil particles. The unconfined compressive strength of one time injected specimen showed a 5% increase compared to untreated specimen. However, for more than two times the strength of injected specimens gradually decreased up to 50% of the untreated specimen by microorganisms. As the number of microorganism injection increased, the amount of calcite precipitation slightly increased within voids. However, over-precipitated calcites may result in strength decrease of slightly cemented soils.

Bond Strength of Grout-Filled Splice Sleeve Considering Effects of Confinement (구속효과를 고려한 모르타르 충전식 철근이음의 부착강도)

  • Kim, Hyong-Kee;Ahn, Byung-Ik
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.615-622
    • /
    • 2003
  • The purpose of this study is to propose the more reasonable equation of bond strength of grout-filled splice sleeve. To accomplish this objective, total 60 full-sized specimens were tested under monotonic loading. The experimental variables are compressive strength of mortar, embedment length and size of reinforcing bars. Following conclusions are obtained; 1) If the adequacy of existing equations which estimate the bond strength of grout-filled splice sleeve are investigated, they underestimate the bond strength of grout-filled splice sleeve by 8-18%. Also the existing equations have a tendency to underestimate with decrease in the embedment length of reinforcing bars. 2) From the test result of bond failure, the equation which estimates the confining pressure of grout-filled splice sleeve was proposed by making multiple regression analyses of which independent variables are embedment length of reinforcing bars and compressive strength of mortar. This equation predicted the measured bond capacity of this test more accurately than existing equations and eliminated the deviation according to the embedment length of reinforcing bars.

Flowability and Strength of Cement Composites with Different Dosages of Multi-Walled CNTs (다중벽 탄소나노튜브의 혼입량에 따른 시멘트 복합체의 유동성 및 강도 변화)

  • Ha, Sung-Jin;Kang, Su-Tae
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.67-74
    • /
    • 2016
  • With several different dosages of multi-walled CNTs which was 0.1, 0.3, and 0.5% of the weight of binder, the fluidity in fresh CNT cement composites, as well as the strength and strength development with age of the hardened composites were investigated in this experimental study. The experimental results from flow test indicated that the increase in the dosage of CNTs badly impacted on the workability of fresh composites, and the results from rheological measurements presented the decrease in plastic viscosity and the increase in yield stress according to the amount of CNTs. In addition, the thixotrophy in the flow curve obtained from the rheology test was observed more noticeably in the composites with higher dosage of CNTs. With the experiments on the strength properties, the improvement of both compressive and tensile strengths with the increase of CNTs dosage could be obtained. Moreover, early strength development by adding CNTs was found when it was compared with plain cementious matrix without CNT.

Studies on Strength of Netting (3) Joint Strength of Twisted-Jointed Netting (그물감의 강도에 관한 연구 (3) 관통형 그물감의 마디의 강도)

  • KIM Dai An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.9 no.4
    • /
    • pp.293-298
    • /
    • 1976
  • 1) The decrease in strength of netting twines at the twisted joint is regarded to be due mainly to tile frictional force between plied yarns, but tile rate of decresae is within $5\%$ in filament twines and 5 to $10\%$ in spun twines. 2) The variation of the twisted joint strength with the angle between the two adjacent bars draws a parabola flaying the minimum value at tile angle of $90^{\circ}$. The minimum value was revealed as about $90\%$ of the strength at the angle of $0^{\circ}$ in wet spun twiness, but regarded to hi negligibly small filament twines. 3) The knot strength is about $30{\pm}5\%$of the twisted joint strength.

  • PDF