• Title/Summary/Keyword: Strength Optimization

Search Result 840, Processing Time 0.024 seconds

Modeling and optimization of infill material properties of post-installed steel anchor bolt embedded in concrete subjected to impact loading

  • Saleem, Muhammad
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.445-455
    • /
    • 2022
  • Steel anchor bolts are installed in concrete using a variety of methods. One of the most common methods of anchor bolt installation is using epoxy resin as an infill material injected into the drilled hole to act as a bonding material between the steel bolt and the surrounding concrete. Typical design standards assume uniform stress distribution along the length of the anchor bolt accompanied with single crack leading to pull-out failure. Experimental evidence has shown that the steel anchor bolts fail owing to the multiple failure patterns, hence these design assumptions are not realistic. In this regard, the presented research work details the analytical model that takes into consideration multiple micro cracks in the infill material induced via impact loading. The impact loading from the Schmidt hammer is used to evaluate the bond condition bond condition of anchor bolt and the epoxy material. The added advantage of the presented analytical model is that it is able to take into account the various type of end conditions of the anchor bolts such as bent or U-shaped anchors. Through sensitivity analysis the optimum stiffness and shear strength properties of the epoxy infill material is achieved, which have shown to achieve lower displacement coupled with reduced damage to the surrounding concrete. The accuracy of the presented model is confirmed by comparing the simulated deformational responses with the experimental evidence. From the comparison it was found that the model was successful in simulating the experimental results. The proposed model can be adopted by professionals interested in predicting and controlling the deformational response of anchor bolts.

Numerical analysis of the combined aging and fillet effect of the adhesive on the mechanical behavior of a single lap joint of type Aluminum/Aluminum

  • Medjdoub, S.M.;Madani, K.;Rezgani, L.;Mallarino, S.;Touzain, S.;Campilho, R.D.S.G.
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.693-707
    • /
    • 2022
  • Bonded joints have proven their performance against conventional joining processes such as welding, riveting and bolting. The single-lap joint is the most widely used to characterize adhesive joints in tensile-shear loadings. However, the high stress concentrations in the adhesive joint due to the non-linearity of the applied loads generate a bending moment in the joint, resulting in high stresses at the adhesive edges. Geometric optimization of the bonded joint to reduce this high stress concentration prompted various researchers to perform geometric modifications of the adhesive and adherends at their free edges. Modifying both edges of the adhesive (spew) and the adherends (bevel) has proven to be an effective solution to reduce stresses at both edges and improve stress transfer at the inner part of the adhesive layer. The majority of research aimed at improving the geometry of the plate and adhesive edges has not considered the effect of temperature and water absorption in evaluating the strength of the joint. The objective of this work is to analyze, by the finite element method, the stress distribution in an adhesive joint between two 2024-T3 aluminum plates. The effects of the adhesive fillet and adherend bevel on the bonded joint stresses were taken into account. On the other hand, degradation of the mechanical properties of the adhesive following its exposure to moisture and temperature was found. The results clearly showed that the modification of the edges of the adhesive and of the bonding agent have an important role in the durability of the bond. Although the modification of the adhesive and bonding edges significantly improves the joint strength, the simultaneous exposure of the joint to temperature and moisture generates high stress concentrations in the adhesive joint that, in most cases, can easily reach the failure point of the material even at low applied stresses.

Valorization of bottom ash with geopolymer synthesis: Optimization of pastes and mortar

  • Froener, Muriel S.;Longhi, Marlon A.;de Souza, Fabiana;Rodriguez, Erich D.;Kirchheim, Ana Paula
    • Advances in concrete construction
    • /
    • v.14 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • Due to the physical-chemical characteristics of some bottom ash (BA), there are technical, economic and environmental limitations to find a destination that will add value to it. In Brazil, this residue is eventually used for filling coal extraction pits or remains in sedimentation ponds, creating a susceptible panorama to environmental issues. The geopolymers binders are one of the alternatives to the proper use high amounts of these materials. In this work, geopolymeric binder pastes were produced with BA mixed to activators with different alkali contents (expressed as %Na2O), as well as the incorporation of soluble silicates (Ms content). The production of binary geopolymeric pastes based on the use of two industrial wastes: fluid catalytic cracking (FCC) and aluminum anodizing sludge (AAS), was also assessed. The content in mass of BA/FCC and BA/AAS ranged from 100/0, 90/10; 80/20 and 70/30. Systems with soluble silicates as activator in a molar ratio SiO2/Na2O of 1.0 (Ms = 1.0) and Na2O content of 15%, showed the best results of mechanical strength (42 MPa at day 28th). The improvement is up to 5X when compared to NaOH based systems. For systems with partial replacement of BA of 10% of AAS and 20% of FCC (80/20), the presence of soluble silicates was also effective to increase compressive strength.

Reliability-based Design Optimization on Mobility of Deep-seabed Test Miner Using Censored Data of Current Speed (중도절단 해류속도자료를 이용한 심해저 시험집광기의 주행성능에 관한 신뢰성 기반 최적설계)

  • Park, Sanghyun;Cho, Su-Gil;Lim, Woochul;Kim, Saekyeol;Choi, Sung Sik;Lee, Minuk;Choi, Jong-Su;Kim, Hyung-Woo;Lee, Chang-Ho;Hong, Sup;Lee, Tae Hee
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.487-494
    • /
    • 2014
  • Deep-seabed test miner operated by a self-propelled mining system moving on soft soil is an essential device to secure floating and towing performances. The performances of the tracked vehicle are seriously influenced by noise factors such as the shear strength of the seafloor, bottom current, seafloor slope, speed of tracked vehicle, reaction forces of flexible hose, steering ratio, etc. Due to uncertainties related to noise factors, the design of a deep-sea manganese nodules test miner that satisfies target reliabilities is difficult. Therefore, reliability-based design optimization (RBDO) is required to guarantee system reliability under circumstances where uncertainties related to noise factors prevail. Among noise factors, the bottom current, a bimodal distribution, is censored due to the observation limit of measurement devices. Therefore, estimated distribution of the bottom current is inaccurate without considering these characteristics and the result of RBDO cannot be guaranteed. In this paper, we define censored data as unknown values over the limit of observation. If this data is estimated by using Akaike information criterion (AIC) that cannot consider the characteristics of censored data, the distribution of estimated data cannot guarantee accurate reliability. Therefore, censored AIC that can consider the characteristics of data is used to estimate accurate distribution of the bottom current. Finally, RBDO, under circumstances where uncertainties related to noise factors combined censored data are present, is performed on the mobility of a deep-sea manganese nodules test miner.

Investigating the Au-Cu thick layers Electrodeposition Rate with Pulsed Current by Optimization of the Operation Condition

  • Babaei, Hamid;Khosravi, Morteza;Sovizi, Mohamad Reza;Khorramie, Saeid Abedini
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.172-179
    • /
    • 2020
  • The impact of effective parameters on the electrodeposition rate optimization of Au-Cu alloy at high thicknesses on the silver substrate was investigated in the present study. After ensuring the formation of gold alloy deposits with the desired and standard percentage of gold with the cartage of 18K and other standard karats that should be observed in the manufacturing of the gold and jewelry artifacts, comparing the rate of gold-copper deposition by direct and pulsed current was done. The rate of deposition with pulse current was significantly higher than direct current. In this process, the duty cycle parameter was effectively optimized by the "one factor at a time" method to achieve maximum deposition rate. Particular parameters in this work were direct and pulse current densities, bath temperature, concentration of gold and cyanide ions in electrolyte, pH, agitation and wetting agent additive. Scanning electron microscopy (SEM) and surface chemical analysis system (EDS) were used to study the effect of deposition on the cross-sections of the formed layers. The results revealed that the Au-Cu alloy layer formed with concentrations of 6gr·L-1 Au, 55gr·L-1 Cu, 24 gr·L-1 KCN and 1 ml·L-1 Lauryl dimethyl amine oxide (LDAO) in the 0.6 mA·cm-2 average current density and 30% duty cycle, had 0.841 ㎛·min-1 Which was the highest deposition rate. The use of electrodeposition of pure and alloy gold thick layers as a production method can reduce the use of gold metal in the production of hallow gold artifacts, create sophisticated and unique models, and diversify production by maintaining standard karats, hardness, thickness and mechanical strength. This will not only make the process economical, it will also provide significant added value to the gold artifacts. By pulsating of currents and increasing the duty cycle means reducing the pulse off-time, and if the pulse off-time becomes too short, the electric double layer would not have sufficient growth time, and its thickness decreases. These results show the effect of pulsed current on increasing the electrodeposition rate of Au-Cu alloy confirming the previous studies on the effect of pulsed current on increasing the deposition rate of Au-Cu alloy.

Shape Optimum Design of Pultruded FRP Bridge Decks (인발성형된 FRP 바닥판의 형상 최적설계)

  • 조효남;최영민;김희성;김형열;이종순
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.319-332
    • /
    • 2004
  • Due to their high strength to weight ratios and excellent durability, fiber reinforced polymer(FRP) is widely used in construction industries. In this paper, a shape optimum design of FRP bridge decks haying pultruded cellular cross-section is presented. In the problem formulation, an objective function is selected to minimize the volumes. The cross-sectional dimensions and material properties of the deck of FRP bridges are used as the design variables. On the other hand, deflection limits in the design code, material failure criteria, buckling load, minimum height, and stress are selected as the design constraints to enhance the structural performance of FRP decks. In order to efficiently treat the optimization process, the cross-sectional shape of bridge decks is assumed to be a tube shape. The optimization process utilizes an improved Genetic Algorithms incorporating indexing technique. For the structural analysis using a three-dimensional finite element, a commercial package(ABAQUS) is used. Using a computer program coded for this study, an example problem is solved and the results are presented with sensitivity analysis. The bridge consists of a deck width of 12.14m and is supported by five 40m long steel girders spaced at 2.5m. The bridge is designed to carry a standard DB-24 truck loading according to the Standard Specifications for Highway Bridges in Korea. Based on the optimum design, viable cross-sectional dimensions for FRP decks, suitable for pultrusion process are proposed.

Comparison and Optimization of Parallel-Transmission RF Coil Elements for 3.0 T Body MRI (3.0 T MRI를 위한 병렬전송 고주파 코일 구조 비교와 최적화)

  • Oh, Chang-Hyun;Lee, Heung-K.;Ryu, Yeun-Chul;Hyun, Jung-Ho;Choi, Hyuk-Jin
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.4 s.316
    • /
    • pp.55-60
    • /
    • 2007
  • In high field (> 3 T) MR imaging, the magnetic field inhomogeneity in the target object increases due to the nonuniform electro-magnetic characteristics of the relatively high RF frequency. Especially in the body imaging, the effect causes more serious problems resulting in locally high SAR(Specific Absorption Ratio). In this paper, we propose an optimized parallel-transmission RF coil and show the utility of the coil by FDTD simulations to overcome the unwanted effects. Three types of TX coil elements are tested to maximize the efficiency and their driving patterns(amplitude and phase) optimized to have adequate field homogeneity, proper SAR level, and sufficient field strength. For the proposed coil element of $25cm{\times}8cm$ loop structure with 12 channels for a 3.0 T body coil, the field non-uniformity of more than 70% without optimization was reduced to about 26 % after the optimization of driving patterns. The experimental as well as simulation results show that the proposed parallel driving scheme is clinically useful for (ultra) high field MRI.

Development of an Open-Typed Optimal Trolley Model for Cable-Based Retractable Membrane Roof (케이블 기반 개폐 막 지붕의 오픈형 최적 트롤리 모델 개발)

  • Lee, Donwoo;Shon, Sudeok;Choi, Bongyoung;Lee, Seungjae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.719-727
    • /
    • 2021
  • In the field of architecture, retractable devices capable of responding flexibly to the environment have been applied widely to large structures. Among these devices, the aesthetically pleasing retractable membrane is lightweight so that the membrane can be opened easily using only a traction device. On the other hand, because the towed membrane moves as it is connected to the main cable by a trolley, the number of trolleys needed increases in proportion to the roof's area. This study proposes an optimal model for an open-type trolley (OTT), which is used widely in these devices, using topology optimization. The analysis used the ANSYS program. A new model was proposed based on the results and reviewed through the feedback. Through this process, it was possible to develop a prototype with increased durability and reduced weight. For OTT, optimization was performed based on static analysis and the boundary conditions, so three prototypes were designed. A comparison of the proposed trolley with the conventional one under the same conditions revealed an up to 71.04% decrease in volume while the yield-strength reached 8.67 to 11.43%. In conclusion, the optimal trolley proposed was found to be reliable in terms of economy and stability.

Consolidation of Powders by magnetic pulsed compaction (자기펄스 가압 성형장치를 이용한 분말성형)

  • Kim, Jun-Ho;Kim, Hyo-Seob;Koo, Jar-Hyung;Lee, Jeong-Koo;Rhee, Chang-Kyu;Hong, Soon-Jik
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.390-393
    • /
    • 2008
  • In this research, we introduce a new process for the consolidation of different types of powders such as metal and ceramic powders by using a magnetic pulsed compaction (MPC). The successful consolidation of many kinds of powers including nanopowder by MPC has been presented. A wide range of experimental studies were carried out for characterizing mechanical properties and microstructure of the MPCed materials. It was found that effective properties of high strength and full density maintaining nanoscal microstructure were achieved. finally, optimization of the compaction parameters and sintering conditions could lead to the good consolidation of powders (metal, ceramic, nano-powder) with higher density, and even further enhanced mechanical properties.

  • PDF

Optimization of the Processing Conditions and Prediction of the Quality for Dyeing Nylon and Lycra Blended Fabrics

  • Kuo Chung-Feng Jeffrey;Fang Chien-Chou
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.344-351
    • /
    • 2006
  • This paper is intended to determine the optimal processing parameters applied to the dyeing procedure so that the desired color strength of a raw fabric can be achieved. Moreover, the processing parameters are also used for constructing a system to predict the fabric quality. The fabric selected is the nylon and Lycra blend. The dyestuff used for dyeing is acid dyestuff and the dyeing method is one-bath-two-section. The Taguchi quality method is applied for parameter design. The analysis of variance (ANOVA) is applied to arrange the optimal condition, significant factors and the percentage contributions. In the experiment, according to the target value, a confirmation experiment is conducted to evaluate the reliability. Furthermore, the genetic algorithm (GA) is combined with the back propagation neural network (BPNN) in order to establish the forecasting system for searching the best connecting weights of BPNN. It can be shown that this combination not only enhances the efficiency of the learning algorithm, but also decreases the dependency of the initial condition during the network training. Most of all, the robustness of the learning algorithm will be increased and the quality characteristic of fabric will be precisely predicted.